SSDs – basics & details on performance

Werner Fischer, Technology Specialist Thomas-Krenn.AG

LinuxTag 2011, May 11th - 14th 2011, Berlin / Germany
SSDs – basics & details on performance

Werner Fischer, Technology Specialist Thomas-Krenn.AG
LinuxTag 2011, May 11th - 14th 2011, Berlin / Germany
The last talk before LinuxNacht

7 p.m.
Umspannwerk
Ohlauer Str. 43
Agenda

1) SSD layout

2) Write techniques

3) Usage examples

4) Configurations tips

Source: maximumpc.com
Agenda

1) SSD layout
 • memory cells
 • pages & blocks
 • planes
 • dies
 • TSOPs & SSDs

2) Write techniques

3) Usage examples

4) Configurations tips
1) SSD layout

- **memory cells**
 - NAND memory cell = MOS transistor with floating gate
 - permanently store charge
 - programming puts electrons on floating gate
 - erase takes them off
 - one program/erase (p/e) cycle is a round trip by the electrons
 - back-and-forth round trips gradually damage the tunnel oxide
 - endurance is limited, measured in number of p/e cycles:
 - 50nm MLC ~ 10.000 p/e cycles
 - 34nm/25nm/20nm MLC ~ 3.000 – 5.000 p/e cycles

Source: Intel
1) SSD layout

- **memory cells**
 - SLC (Single Level Cell) → 1 Bit per memory cell
 - MLC (Multi Level Cell) → 2 Bits per memory cell
 - TLC (Triple Level Cell) → 3 Bits per memory cell
 - 16LC (16 Level Cell) → 4 Bits per memory cell

Source: anandtech.com
1) SSD layout

• **pages: multiple memory cells**

 – one page is the smallest structure which can be *read* or *written*

• **blocks: multiple pages**

 – one block is the smallest structure which can be *erased*

 – e.g.

 one block = 128 pages á 4 KiB (with MLC 16.384 memory cells per page)

 → 512 KiB Block

 – newer SSDs (25nm/20nm Intel/Micron or 24nm/19nm Sandisk/Toshiba)

 one block = 256 pages á 8 KiB

 → 2 MiB Block

Source: anandtech.com
1) SSD layout

• planes
 – multiple blocks make up a plane
 – e.g. 1,024 Blocks = 1 Plane
 – 25nm Intel/Micron: 1 Plane = 2 GiByte

Source: anandtech.com
1) SSD layout

- **dies**
 - multiple planes make up a die, e.g. 4 Planes = 1 Die

Intel/Micron: dies with 64 GiBit (8 GiByte)

Source: http://newsroom.intel.com/community/intel_newsroom/blog/2011/04/14

wafer
Source: Intel/Micron
1) SSD layout

- **TSOPs (thin small outline packages)**
 - multiple dies make up a TSOP
 - typically one – two dies in a TSOP
 - up to eight dies possible
 \[\rightarrow 64 \text{ GiByte in a TSOP}\]

- **SSDs**
 - multiple TSOPs (e.g. ten) make up a SSD
 - currently capacities up to 600 GB
Agenda

1) SSD layout

2) Write techniques
 - spare area
 - wear leveling
 - ATA TRIM
 - garbage collection
 - secure erase
 - endurance

3) Usage examples

4) Configurations tips
2) Write techniques

- **spare area**
 - typically between 7% and 28% of net capacity
 - e.g. 160 GByte visible, but actual capacity is 160 GiByte (171.8 GByte → 11.8 GByte Spare Area)
 - spare area is used for
 - read/modify/write
 - wear leveling
 - bad block replacement
2) Write techniques

- **wear leveling**
 - flash memory cells can only be erased (written) a limited amount of times
 - wear leveling distributes the wearout over all memory cells
2) Write techniques

• **ATA TRIM**
 - OS tells the SSD which LBAs are not needed anymore and can be erased
 - increases the number of deleted blocks, increases the write performance
 - ATA TRIM must be supported by
 • SSD
 • operating system
 • file system
2) Write techniques

- garbage collection
 - at times without I/O the SSD controller merges partly-filled blocks
 - increases the number of deleted blocks
2) Write techniques

- **secure erase**
 - all data gets lost
 - for most SSDs, this deletes all blocks of the SSD by applying an extinction voltage
 - afterwards all blocks are deleted → higher write performance
 - recommended when
 - a used SSD will be used for a different application
 - after performance tests have been done and the SSD should be used for production usage
 - newer SSD with integrated encryption only delete encryption key when doing a secure erase – TRIM is needed there for deleting all blocks
2) Write techniques

- **endurance**
 - **bad blocks**
 - erase slows down with p/e cycles
 - if a NAND block fails to erase, the NAND reports that and the controller will use another block instead
 - no lost data, a failed NAND block is not a problem (as long as there is enough spare capacity)
 - **write data errors**
 - RBER (raw bit error rate) – corrected by ECC
 - RBER gradually increases with p/e cycles
 - ECC used for correction
 - UBER (uncorrectable bit error rate) must be kept very low (<1 error out of every \(10^{15}\) to \(10^{16}\) accesses)
2) Write techniques

- **endurance**
 - data retention
 - number of hours (days/years) how long the data can be written if the device is powered off and not in use
 - ECC can correct a limited number of errors
 - retention time decreases with p/e cycles
 - defects
- **all NAND devices have a „wearout cliff“**
 - new JDEC standards (TBW – Terabytes written)

Source: Intel
Agenda

1) SSD layout

2) Write techniques

3) Usage examples
 - SSD as (small) boot device
 - SSD as replacement for a single HDD
 - SSDs in a RAID configuration
 - SSD as cache

4) Configuration tips
3) Usage examples

- **SSD as (small) boot device**
 - low number of p/e cycles, daily turnover e.g. 0.1x
 - low SSD capacity (e.g. 40 GB or 80 GB) is enough (lower costs)
 - shortened boot-up times
 - programs start faster
 - increases the productivity when working at the PC

80 GB $
3) Usage examples

- **SSD as replacement for a single HDD**
 - normal/low number of p/e cycles, daily turnover e.g. 0,5x; often less
 - middle/higher SSD capacity (middle/higher costs)
 - less power usage and less waste heat, as there is no HDD any more
 - very interesting option for laptops:
 - increases run-time of battery
 - decreases weight
 - increases productivity
3) Usage examples

- **SSDs in a RAID configuration**
 - normal/low number of p/e cycles, daily turnover e.g. 0.5x; often less
 - middle/higher SSD capacity (middle/higher costs)
 - ATA TRIM can not be used with RAID controllers

160-600 GB

$\text{$$$$}$
3) Usage examples

- **SSD as cache**
 - high number of p/e cycles, daily turnover e.g. 10x
 - SSD endurance must be monitored
 - increased spare area increases endurance
 - examples
 - Adaptec maxCache
 - cache device for ZFS

32-600 GB

$\text{$$$$}$
Agenda

1) SSD layout

2) Write techniques

3) Usage examples

4) Configuration tips
 - use AHCI
 - secure erase / full TRIM before production use
 - use ATA TRIM
 - align partitions and file systems
 - use over-provisioning
4) Configuration tips

- use AHCI
 - NCQ (Native Command Queuing)
 - LPM (Link Power Management)
 - use Device Initiated Interface Power Management (DIPM)
- secure erase / full TRIM before production use
 - before doing the partitioning
 - erases all blocks of the SSD
 - increases write performance
- use ATA TRIM
 - Linux 2.6.33 or higher (e.g. Ubuntu 10.10)
 - batched discard support in 2.6.37 (FITRIM ioctl), Ext3 & XFS support batched discard with 2.6.38
4) Configuration tips

- **align partition and file systems**
 - wrong alignment:

 ![Diagram showing wrong alignment]

 - use fdisk parameters: `fdisk -c -u /dev/sda`
 - correct alignment:

 ![Diagram showing correct alignment]
4) Configuration tips

- over-provisioning (increase spare area)

Source: Intel
Conclusions

technology of SSDs has evolved

prices per GByte decrease (25 nm, later 20nm)

endurance planning possible
with new JEDEC standard

→ SSDs will get even more important in the future
Thanks for your time!

wfischer@thomas-krenn.com
hall 7.2a, booth 143