

# AMD Genoa-Training for Thomas Krenn, public Version, September 2023

### Jan Baumann

senior Field Application Engineer Client / Datacenter DACH-Region



### **Cautionary Statement**

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) such as the features, functionality, performance, availability, timing and expected benefits of AMD products as well as AMD product roadmaps, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but not limited to AMD's most recent reports on Forms 10-K and 10-Q.

AMD does not assume, and hereby disclaims, any obligation to update forward-looking statements made in this presentation, except as may be required by law.

# AMD COMPUTING NOW POWERS THE DAILY LIVES OF BILLIONS

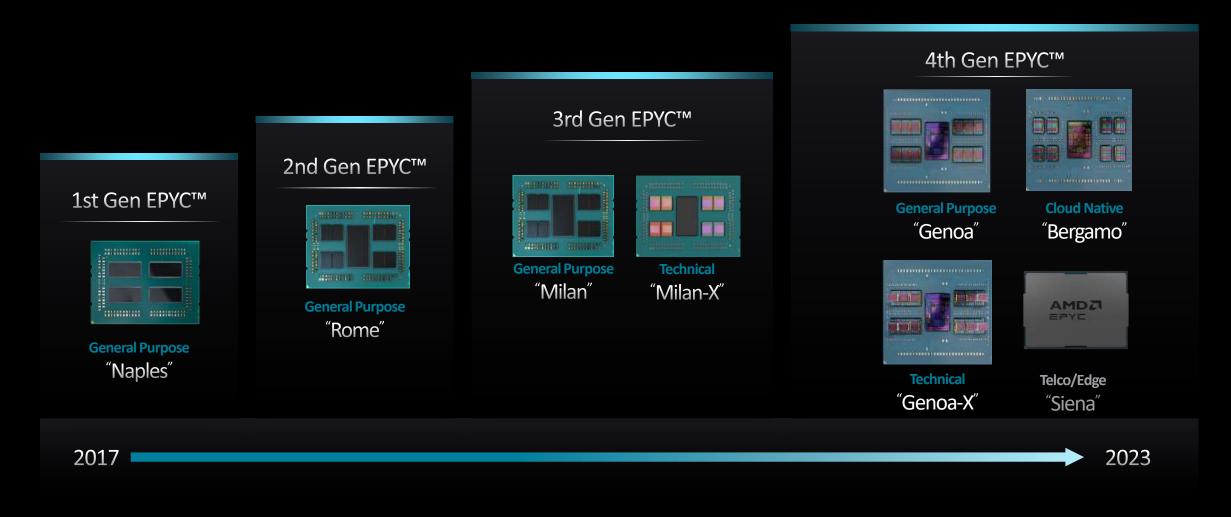


# **AMD Server Strategy**

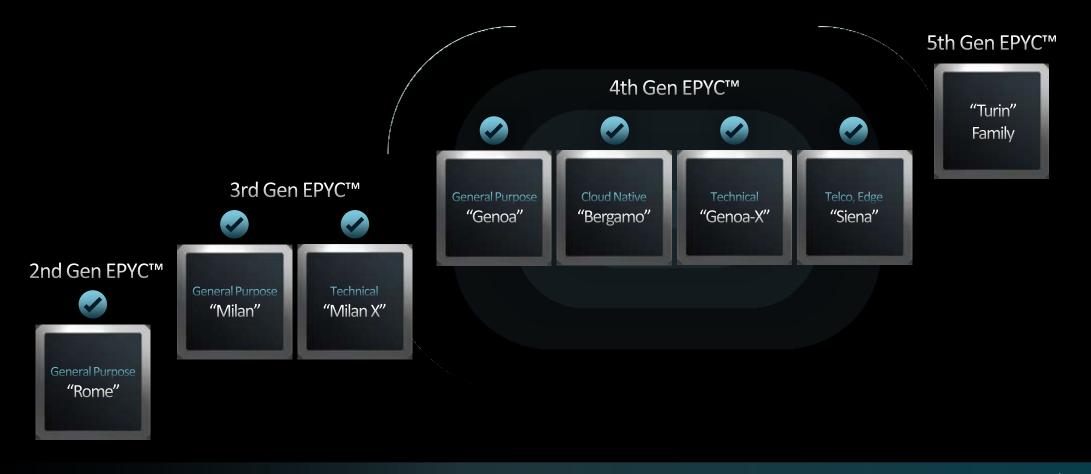


Highest performing general purpose server CPU in the world

Optimized silicon for diverse workloads


ZEN




Full stack solutions, ecosystem scale & partnerships to accelerate time-to-value

# AMD EPYC<sup>™</sup> JOURNEY

Four Generations of On-Time Execution



# **Strong Execution on Strategy and Roadmap**





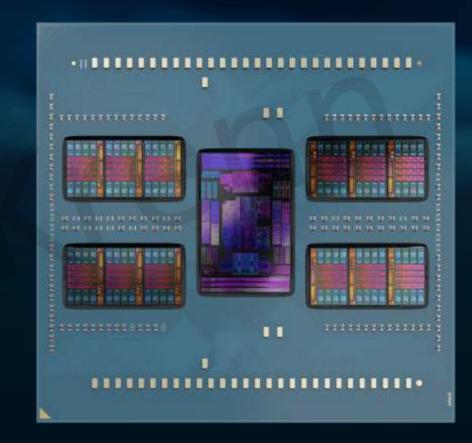
2024

All roadmaps are subject to change.

### EPYC<sup>™</sup> "Zen4" CPU Portfolio Expansion

- Server segments splintering with multiple optimization points for cloud & enterprise
- "Zen4" portfolio expansion built on common core/L1/L2 and platform compatibility
- "Genoa" and "Bergamo" designed for compelling performance gen-to-gen and versus competition

| Use<br>Cases               | Cloud<br>"Scale Out"                | Supercompute/<br>Capacity HPC | Cloud<br>"Scale Up"           | Core Apps &<br>Commercial<br>HPC | Enterprise<br>IT | Value<br>Enterprise<br>& SMB   | Edge<br>Compute            |
|----------------------------|-------------------------------------|-------------------------------|-------------------------------|----------------------------------|------------------|--------------------------------|----------------------------|
| Customer<br>Care<br>Abouts | High Core<br>Density                | FLOPs / Socket<br>Throughput  | High Perf<br>per Core         | Highest Perf<br>per Core         | Balanced<br>TCO  | Good Price<br>& Perf           | Perf / Watt<br>Form Factor |
| "Zen4"<br>Solution         | <b>'Bergamc</b><br>("Zen4c", SP5, U |                               | 'Genoa' / 'Ge<br>("Zen4", SP5 |                                  |                  | <b>'Siena</b><br>("Zen4c", SP6 | -                          |


# **4th Gen AMD EPYC™ CPU** Extending Compute Leadership

Leadership Socket and Per-Core Performance
 Up to 96 "Zen 4" Cores in 5nm

 Leadership Memory Bandwidth and Capacity 12 Channels DDR5

Next Generation I/O Up to 160 Lanes of PCIe<sup>®</sup> Gen 5 | Memory Expansion with CXL

Advances in Confidential Computing ~2X SEV-SNP Guests | Direct and CXL Attached Memory Encryption



19 2022

### AMD EPYC<sup>™</sup> 9004 "GENOA" - AT A GLANCE

#### COMPUTE

- AMD "Zen4" x86 cores (Up to 12 CCDs / 96 cores / 192 threads)
- 1MB L2/Core, Up to 32MB L3/CCD
- ISA updates: BFLOAT16, VNNI, AVX-512 (256b data path)
- Memory addressability with 57b/52b Virtual/Physical Address
- Updated IOD and internal AMD Gen3 Infinity Fabric<sup>™</sup> architecture with increased die-to-die bandwidth
- Target TDP range: Up to 400W (cTDP)
- Updated RAS

#### MEMORY

- 12 channel DDR5 with ECC up to 4800 MHz
- Option for 2,4,6, 8, 10, 12 channel memory interleaving<sup>1</sup>
- RDIMM, 3DS RDIMM
- Up to 2 DIMMs/channel capacity with up to 12TB in a 2 socket system (2DPC, 256GB 3DS RDIMMs)<sup>1</sup>



BLUE font indicates significant upgrades with EPYC 9004.

#### SP5 PLATFORM

- New socket, increased power delivery and VR
- Up to 4 links of Gen3 AMD Infinity Fabric<sup>™</sup> with speeds of up to 32Gbps
- Flexible topology options
- Server Controller Hub (USB, UART, SPI, I2C, etc.)

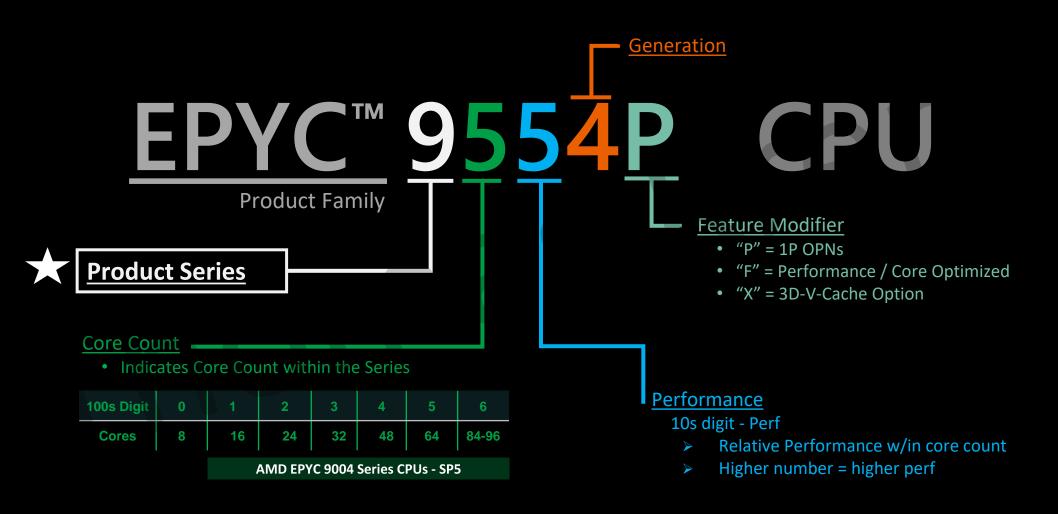
#### INTEGRATED I/O - NO CHIPSET

#### Up to 160 IO lanes (2P) of PCIe® Gen5

- Speeds up to 32Gbps, bifurcations supported down to x1
- Up to 12 bonus PCIe Gen3 lanes in 2P config (8 lanes-1P)
- Up to 32 IO lanes for SATA

64 IO Lanes support for CXL1.1+ with bifurcations supported down to x4

#### SECURITY FEATURES


- Dedicated Security Subsystem with enhancements
- Secure Boot, Hardware Root-of-Trust
- SME (Secure Memory Encryption)
- SEV-ES (Secure Encrypted Virtualization & Register Encryption)

SEV-SNP (Secure Nested Paging), AES-256-XTS with more encrypted VMs

AMD EPYC<sup>™</sup> 9004 Series public Training for Thomas Krenn, July 2023 certain DIMM population rules.

# **AMD EPYC™** Processor Naming Convention

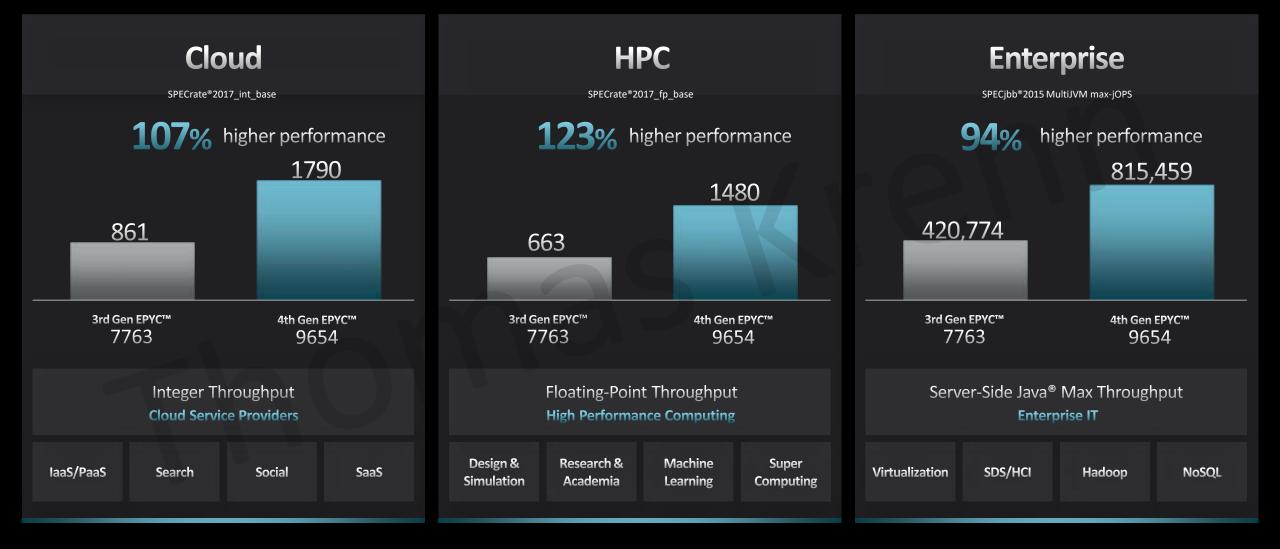
### **EPYC 9004 Series CPUs**



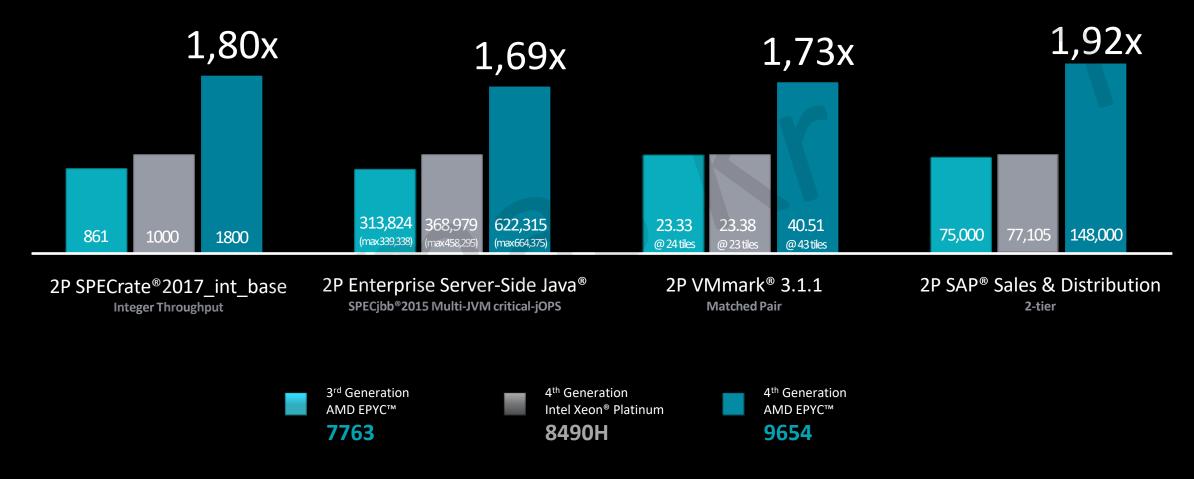
# AMD EPYC<sup>™</sup> 9004 Series Processor

All-in Feature Set support

- 12 Channels of DDR5-4800
- Up to 6TB DDR5 memory capacity
- 128 lanes PCle<sup>®</sup> 5
- 64 lanes CXL 1.1+
- AVX-512 ISA, SMT & core frequency boost
- AMD Infinity Fabric<sup>™</sup>
- AMD Infinity Guard

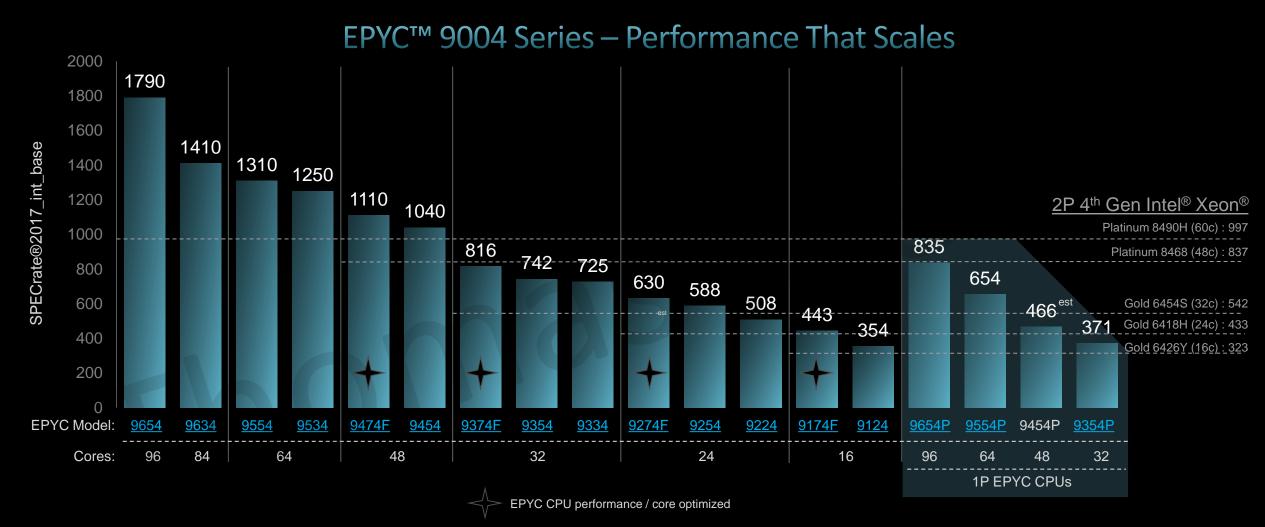

| Cores    |         | Base/Boost* (up to GHz) | Default TDP (w) | cTDP (w) |
|----------|---------|-------------------------|-----------------|----------|
| 96 cores | 9654/P  | 2.40/3.70               | 360w            | 320-400w |
| 84 cores | 9634    | 2.25/3.70               | 290w            | 240-300w |
| 64 cores | 9554/P  | 3.10/3.75               | 360w            | 320-400w |
| 64 cores | 9534    | 2.45/3.70               | 280w            | 240-300w |
|          | → 9474F | 3.60/4.10               | 360w            | 320-400w |
| 48 cores | 9454/P  | 2.75/3.80               | 290w            | 240-300w |
| 32 cores | → 9374F | 3.85/4.30               | 320w            | 320-400w |
| 32 cores | 9354/P  | 3.25/3.80               | 280w            | 240-300w |
| 32 cores | 9334    | 2.70/3.90               | 210w            | 200-240w |
|          | → 9274F | 4.05/4.30               | 320w            | 320-400w |
| 24 cores | 9254    | 2.90/4.15               | 200w            | 200-240w |
|          | 9224    | 2.50/3.70               | 200w            | 200-240w |
|          | → 9174F | 4.10/4.40               | 320w            | 320-400w |
| 16 cores | 9124    | 3.00/3.70               | 200w            | 200-240w |

# **EPYC<sup>™</sup> 9004 Series CPU Positioning**


### **Processor Groups**

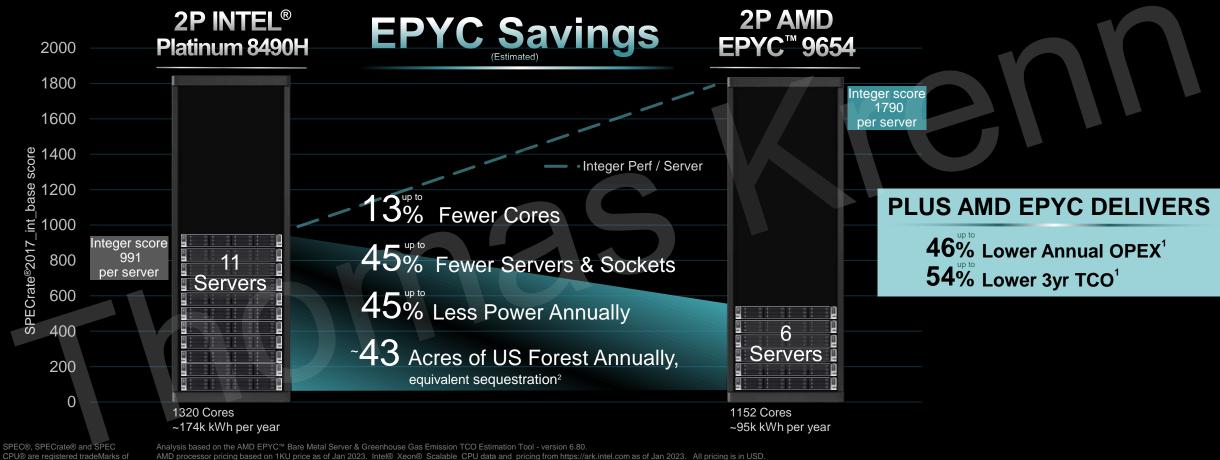
| <b>Core Performance</b><br>High frequency with large cache/core ratio | 9474F (48c-360w)<br>9274F (24c-320w)                        | 9374F (32c-320w)<br>9174F (16c-320w) |
|-----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|
| Core Density<br>Highest core and thread count                         | 9654/P (96c-360w)<br>9554/P (64c-360w)<br>9454/P (48c-290w) | 9634 (84c-290w)<br>9534 (64c-280w)   |
|                                                                       | 9354/P (32c-280w)                                           | 9334 (32C-210W)                      |
| Balanced and Optimized Performance and TCO                            | 9254 (24c-200w)                                             | 9224 (24c-200w)                      |
|                                                                       | 9124 (16c-200w)                                             |                                      |

# Advancing AMD EPYC<sup>™</sup> CPU Leadership




# 4TH GEN AMD EPYC<sup>™</sup> CPU PERFORMANCE LEADERSHIP

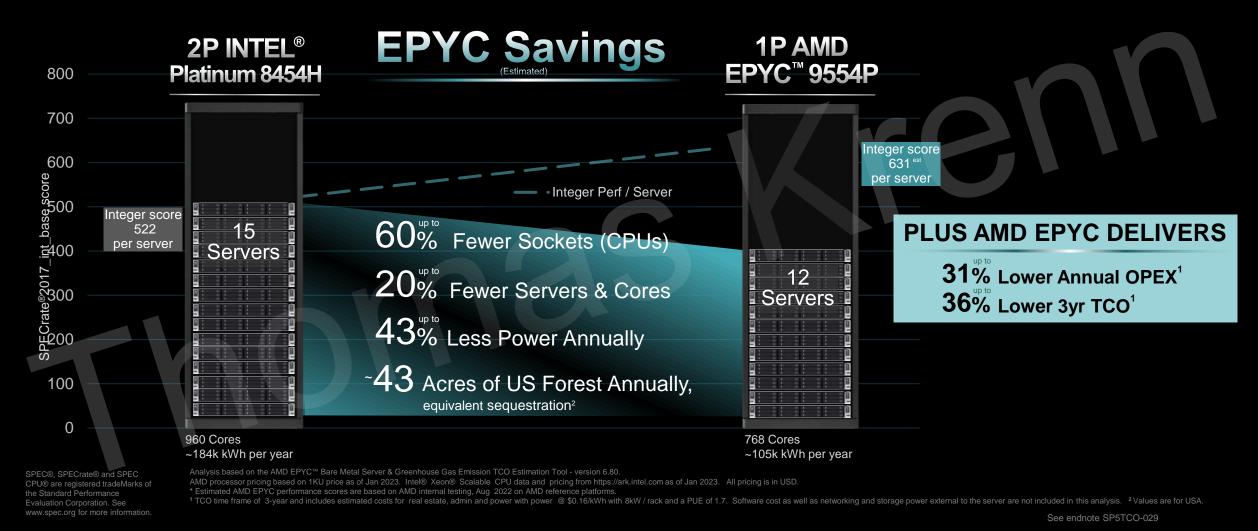




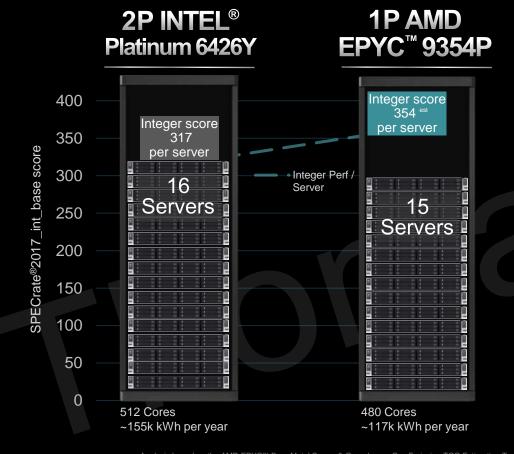

# **EPIC PERFORMANCE TO FIT YOUR NEEDS**



### AMDZ Fewer Servers, Less Power, Leading to Lower Emissions 10,000 SPECrate<sup>®</sup> 2017\_int\_base


### **Top of Stack – Head to Head Comparison**




1 TCO time frame of 3-year and includes estimated costs for real estate, admin and power with power @ \$0.16/kWh with 8kW / rack and a PUE of 1.7. Software cost as well as networking and storage power external to the server are not included in this analysis. <sup>2</sup> Values are for USA www.spec.org.for.more.information

the Standard Performance Evaluation Corporation, See

# Fewer Servers, Less Power, Leading to Lower Emissions 7,500 SPECrate<sup>®</sup> 2017\_int\_base 64 Cores / Server – Head to Head Comparison



### Fewer Servers, Less Power, Leading to Lower Emissions 5,000 SPECrate<sup>®</sup>2017\_int\_base 32 Cores / Server – Head to Head Comparison



### **Concerned with**

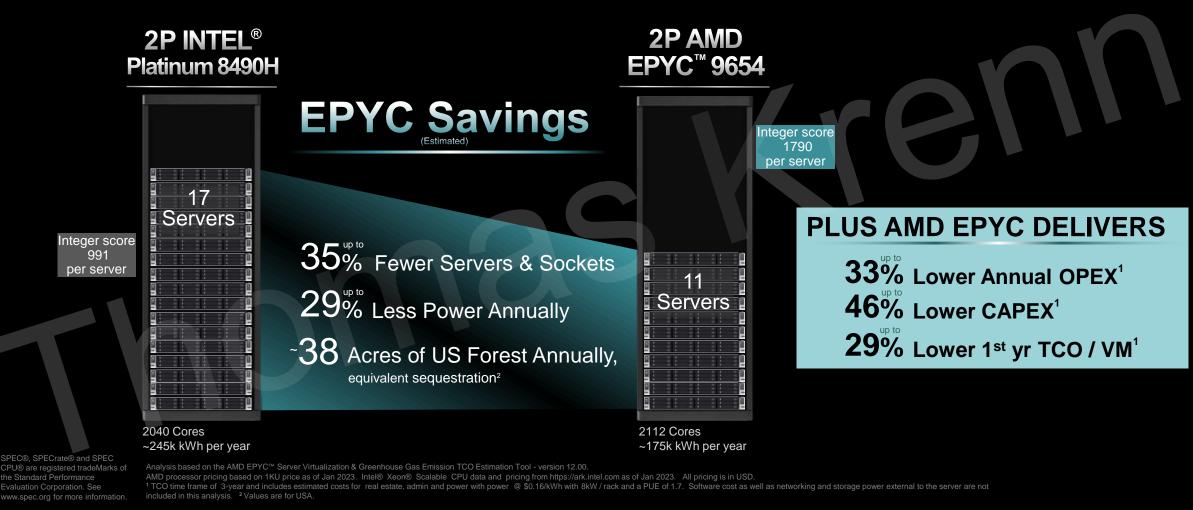
- SW License Costs?
- Space?
- Power?

# EPYC Solutions Enable

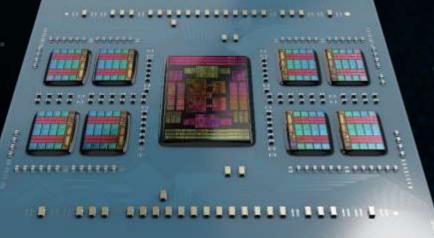
53% Fewer Sockets & 6% Fewer Cores  $\rightarrow$  Lower Licensing and Less Space

38k kWh (24%) Less Power Annually  $\rightarrow$  Lower Power Bills, Reduce OPEX

<sup>~</sup>20 Acres of US Forest Annually, → Lower Carbon Emissions equivalent sequestration<sup>2</sup>


Plus 17<sup>°</sup>/<sub>6</sub> (~\$16,000) Lower Annual OPEX<sup>1</sup> 30<sup>°</sup>/<sub>6</sub> (~\$66,000) Lower 3yr TCO<sup>1</sup>

SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.


Analysis based on IKU price as of Jan 2023. Intel® Xeon® Scalable CPU data and pricing from https://ark.intel.com as of Jan 2023. All pricing is in USD. \* Estimated AMD EPYC performance scores are based on AMD internal testing, Aug 2022 on AMD reference platforms.

1 TCO time frame of 3-year and includes estimated costs for real estate, admin and power with power @ \$0.16/kWh with 8kW / rack and a PUE of 1.7. Software cost as well as networking and storage power external to the server are not included in this

### Fewer Servers, Less Power, Leading to Lower Emissions 2,000 VMs EPYC 96c 9654 to Intel 60c 8490H CPUs – Head to Head Comparison



# 4<sup>TH</sup> Gen AMD EPYC<sup>™</sup> 97X4 CPU "Bergamo" Optimized for Cloud Native Workloads

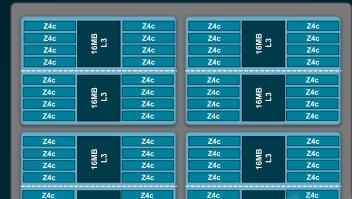


Greatest vCPU Density Leadership Cloud Performance

Best Energy Efficiency Consistent x86 ISA Up to 128 "Zen 4c" Cores

See Endnotes – EPYC-049 and <u>https://www.amd.com/system/files/documents/amd-epyc-9004-pb-spec-power.pdf</u> for Energy Efficiency toe




### AMD EPYC 97x4 "Bergamo" - At a Glance

### COMPUTE

- AMD "Zen4c" x86 cores (Up to 8 CCDs / Up to 128 cores / 256 threads)
- 1MB L2/Core, 2x 16MB L3 8-Core-CCX per CCD
- ISA updates: BFLOAT16, VNNI, AVX-512 (256b data path)
- Memory addressability with 57b/52b VA/PA
- Updated IOD and internal AMD Gen3 Infinity Fabric<sup>™</sup> architecture with increased die-to-die bandwidth
- Target TDP range: up to 400W (cTDP)
- Updated RAS

### MEMORY

- 12 channel DDR5 with ECC up to 4800 MHz
- Option for 2, 4, 6, 8, 10, 12 channel memory interleaving
- RDIMM, 3DS RDIMM
- Up to 2 DIMMs/channel capacity of 12TB per 2 socket system (based on 256GB 3DS DIMMs with 2 DIMMs per Channel support)

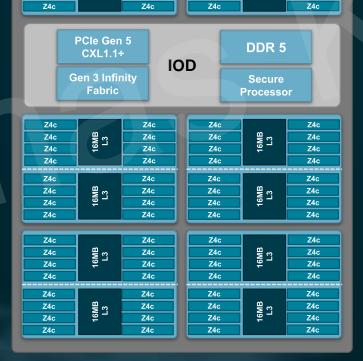


Z4c

Z4c

I6MB L3 Z4c

Z4c


Z4c

Z4c

Z4c

Z4c

I6MB L3



#### I/O

- Up to 160 IO lanes (2P) of PCIe® Gen5, with speeds up to 32Gbps, bifurcations supported down to x1
- Up to 12 bonus PCIe Gen3 lanes in 2P config (8 lanes 1P)
- 32 IO lanes for SATA
- SDCI (SMart Data Cache Injection)
- 64 IO Lanes support CXL1.1+ with bifurcations supported down to x4

### **SP5 PLATFORM**

- New socket, increased power delivery and VR
- Up to 4 links of Gen3 AMD Infinity Fabric<sup>™</sup> with speeds of up to 32Gbps
- Flexible topology options
- Server Controller Hub (USB, UART, SPI, I2C, etc.)

### SECURITY FEATURES

- Dedicated Security Subsystem features with enhancements
- Hardware Root-of-Trust

BLUE indicates significant update from "Zen 3" / "Milan"

ORANGE indicates difference from "Zen 4" / "Genoa" Preliminary Guidance – Roadmap, features & schedules subject to change 🗛



# 4TH GEN AMD EPYC<sup>™</sup> 97X4 "Bergamo" CPU PRODUCT STACK

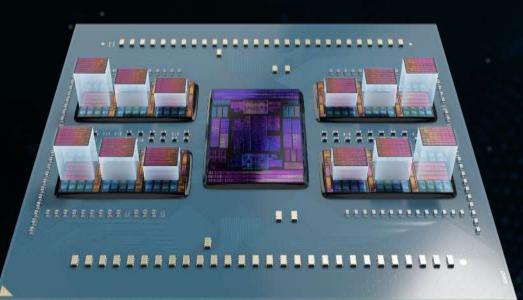
| MODEL | CORES | THREADS | DEFAULT<br>TDP (W) | cTDP<br>RANGE<br>(W) | Fbase /<br>Fboost* | SMT<br>Configurable | L3<br>CACHE<br>(MB) | DDR5<br>CHANNEL<br>S | PCle<br>Gen 5 |
|-------|-------|---------|--------------------|----------------------|--------------------|---------------------|---------------------|----------------------|---------------|
| 9754  | 128   | 256     | 360                | 320 - 400            | 2.25 / 3.1         | Y                   | 256                 | 12                   | x128          |
| 9754S | 128   | 128     | 360                | 320 - 400            | 2.25 / 3.1         | N<br>(SMT OFF ONLY) | 256                 | 12                   | x128          |
| 9734  | 112   | 224     | 340                | 320 – 400            | 2.20 / 3.0         | Y                   | 256                 | 12                   | x128          |



# **Optimized Cloud Native Performance**

#### Up to

3.


X throughput performance (~2.9x avg.) for a wide variety of cloud native workloads



2P servers: 128C AMD EPYC<sup>™</sup> 9754 vs. Ampere Altra<sup>®</sup> Max M128-30 and 56C/60C Intel Xeon Platinum 8480+/8490H

Results may vary due to factors including system configurations, software versions and BIOS settings. As of 6/13/2023, see Cloud Native Workloads <a href="https://www.amd.com/system/files/documents/amd-epyc-">https://www.amd.com/system/files/documents/amd-epyc-</a> 9004-nbc-cloud-native-workloads on fit together we advance\_

# 4<sup>TH</sup> GEN AMD EPYC With AMD 3D V-Cache® Technology "Genoa-X"



Leadership 5nm Process Node High Performance "Zen 4" cores Up to 1.1 GB of L3 Cache AMD Infinity Guard Rich Ecosystem of Solutions

World's highest performance x86 server CPU for technical computing



As of 6/13/2023, see SP5-165, GD-183

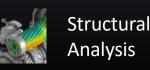
# 4TH GEN AMD EPYC<sup>™</sup> 9x84X "Genoa-X" CPU PRODUCT STACK

| MODEL | CORES | THREADS | DEFAULT<br>TDP (W) | cTDP<br>RANGE (W) | Fbase /<br>Fboost* | L3 CACHE<br>(MB) | DDR5<br>Channels | DDR5<br>CHANNELS |
|-------|-------|---------|--------------------|-------------------|--------------------|------------------|------------------|------------------|
| 9684X | 96    | 192     | 400                | 320 - 400         | 2.55 / 3.7         | 1,152            | 12               | x128             |
| 9384X | 32    | 64      | 320                | 320 - 400         | 3.1 / 3.9          | 768              | 12               | x128             |
| 9184X | 16    | 32      | 320                | 320 – 400         | 3.55 / 4.2         | 768              | 12               | x128             |



# 4<sup>TH</sup> Gen EPYC<sup>™</sup> with AMD 3D V-Cache<sup>™</sup> Technology Workload Mapping




Electronic Design Automation



Computational Fluid Dynamics



Finite Element Analysis



16 Core | EPYC™ 9184X

32 Core | EPYC<sup>™</sup> 9384X

96 Core | EPYC<sup>™</sup> 9684X



# Leadership EDA Performance

~26.2 JOBS/HOUR

### 16-CORE 4<sup>th</sup> GEN AMD EPYC<sup>™</sup> WITHOUT AMD 3D V-CACHE<sup>™</sup>

Up to **73%** 

# FASTER RTL VERIFICATION

SYNOPSYS<sup>®</sup> VCS<sup>®</sup>

AMD graphics card

# ~**45.4** JOBS/HOUR

16-CORE 4<sup>th</sup> GEN AMD EPYC<sup>™</sup> WITH AMD 3D V-CACHE

As of 4 May 2023. 1P servers: EPYC 9174F vs. EPYC 9184X. Results may vary due to factors including system configurations, software versions and BIOS settings. See SP5-050.



### Performance Leadership Technical Computing CFD and FEA 32-core Max/Avg. Result Comparison

 ~2,0x
 ~1,9x
 ~1,9x

 1x
 ~1,8x
 ~1,9x

 1x
 ~1.8x
 ~1.3x

 avg.
 ~1.5x
 ~1.5x

 avg.
 avg.
 ~1.8x



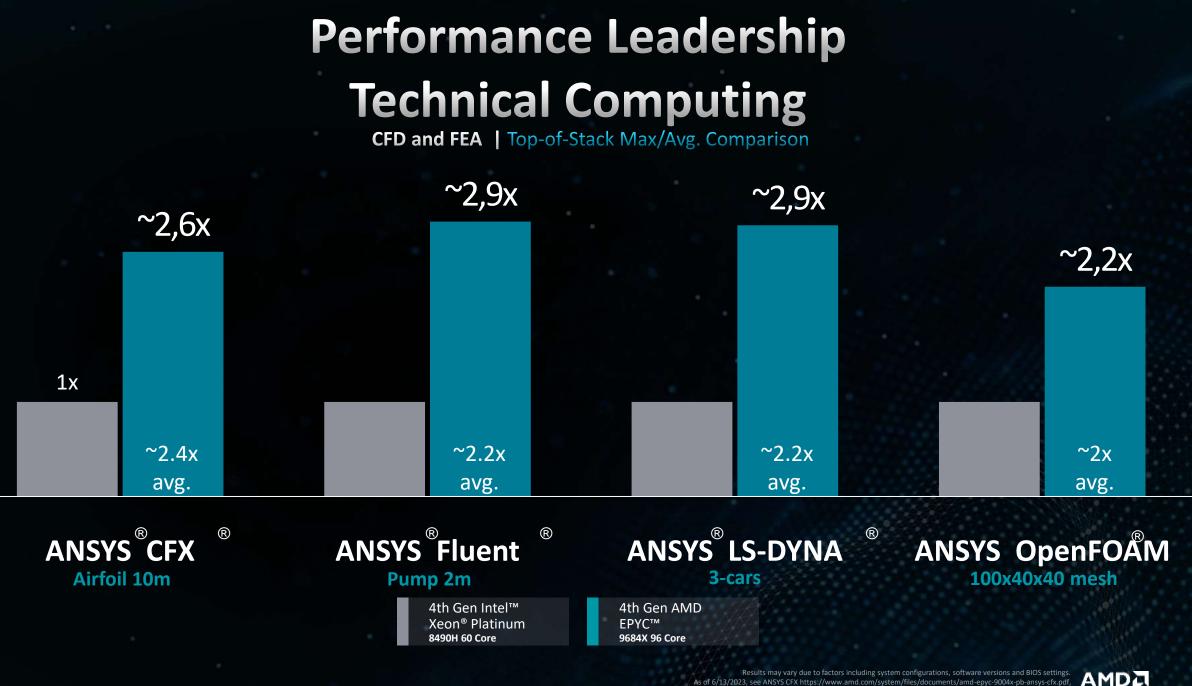
### **ANSYS<sup>®</sup> Fluent<sup>®</sup>**

#### Pump 2m

4th Gen Intel™ Xeon® Platinum 8462Y+ 32 Core

# ANSYS<sup>®</sup> LS-DYNA<sup>®</sup>

4th Gen AMD EPYC™ 9384X 32 Core


> Results may vary due to factors including system configurations, software versions and BIOS settings. As of 6/13/2023, see ANSYS CFX https://www.amd.com/system/files/documents/amd-epyc-9004x-pb-ansys-fx.pdf, ANSYS LS-DYNA https://www.amd.com/system/files/documents/amd-epyc-9004x-pb-ansys-fluent.pdf and OpenFOAM https://www.amd.com/system/files/documents/amd-epyc-9004x-pb-ansys-fluent.pdf and OpenFOAM https://www.amd.com/system/files/documents/amd-epyc-9004x-pb-ansys-fluent.pdf and OpenFOAM

### AMD together we advance\_

**OpenFOAM**<sup>®</sup>

100x40x40 mesh

PG. 42 | AMD EPYC<sup>™</sup> PROCESSOR PRESS & ANALYST UPDATE | UNDER EMBARGO UNTIL June 13, 2023 at 11:30AM PT

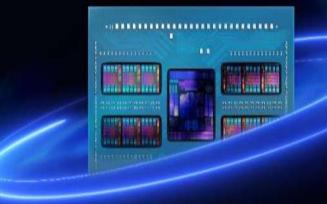


PG. 43 | AMD EPYC<sup>™</sup> PROCESSOR PRESS & ANALYST UPDATE | UNDER EMBARGO UNTIL June 13, 2023 at 11:30AM PT

Servers

**Normalized Performance 2P** 

As of 6/13/2023, see ANSYS CFX https://www.amd.com/system/files/documents/amd-epyc-9004x-pb-ansys-cfx.pdf, ANSYS LS-DYNA https://www.amd.com/system/files/documents/amd-epyc-9004x-pb-ansys-dx.pdf, ANSYS LS-DYNA https://www.amd.com/system/files/documents/amd-epyc-904x


# Workload Optimized 4th Gen EPYC<sup>™</sup> CPU Portfolio

### AMD EPYC<sup>™</sup> 9004 Series

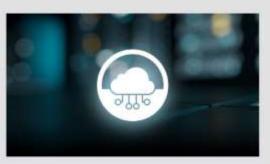
4<sup>th</sup> Gen EPYC<sup>™</sup> ("Genoa") → World's best data center CPU

AMD EPYC<sup>m</sup> 97X4 ("Bergamo")  $\rightarrow$  Best cloud native optimized CPU

4<sup>th</sup> Gen EPYC<sup>™</sup> with AMD 3D V-Cache<sup>®</sup> Technology ("Genoa-X") → Best technical computing optimized CPU



# TOOLS AND RESOURCES PARTNER ENABLEMENT


Tool



AMD EPYC<sup>™</sup> Processor Selector Tool AMD EPYC<sup>™</sup> Server Virtualization TCO Estimation



AMD EPYC<sup>™</sup> Bare Metal and Greenhouse Gas Emissions TCO Estimation Tool



**AMD Cloud Cost Advisor** 

AMD EPYC Online Tools amd.com/en/processors/epyc-tools

AMD Arena Training Courses arena.amd.com/courses/processors/epyc Technical Documents Library amd.com/en/processors/server-tech-docs/search

AMD Meet The Experts Webinars

amd.com/en/partner/meet-experts-webinars

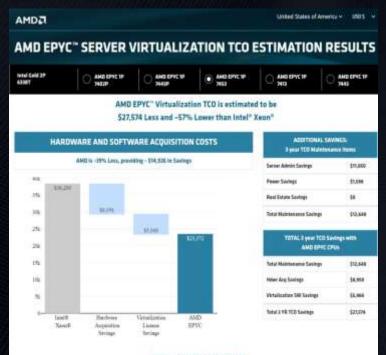
AMD Security (SEV) <u>developer.amd.com/sev</u>

AMD Digital Library <u>library.amd.com</u>

### 

#### AMD EPYC<sup>™</sup> processor Selector Tool https://www.amd.com/en/processors/epvc-cpuselector

#### AMD EPYC" Processor Selector Tool


This tool lets the user compare Intel® Xeon® Scalable processors to comparable AMD EPYC processors. Simply select "IP EPYC" or 2F EFFC\* as your basis of comparison. Next choose the Intel Scalable generation, and select the Intel processor to compare from the drop down list in Step 3. Then choose your Comparison Metric, the tool will automatically show the comparable AMD EPVC processors for the Intel processor selected based on the indicated metric.

#### Select Comparision Details

| Please enter the delate of Inial Scalable | processes to compare with AMC | DEPTE processor           |            |  |
|-------------------------------------------|-------------------------------|---------------------------|------------|--|
| Compare to AMD EPYC                       | O rent @ reins                |                           |            |  |
| Tip)<br>Select Intel Scalable generation  | Ind Generation Scalable       | Select Intel Scalable CPU | Cell \$342 |  |

| Single<br>Comparison<br>Metric   | listel Gold 2P<br>6342 | ана врус зр<br>7443         | ана бутсая<br>7413 о         | AND SPYC (#<br>7453 0     |
|----------------------------------|------------------------|-----------------------------|------------------------------|---------------------------|
|                                  |                        | · Uttimate                  | © Optimum                    | Better                    |
| Server CPU Price                 | \$5,058                | \$4,020<br>(31.038 Savings) | \$3,650<br>191,438 Seetingsi | \$3,540<br>(0.110 Davieg) |
| C Server Dotel Clima,            | 48                     | 48<br>(Seend                | 48<br>(Serve)                | SE<br>p.tremost           |
| SPECielan"<br>2017, fg, been     | 179                    | 426<br>(173a Notice)        | 417<br>III:tis Battas)       | 402<br>(1.55a (Jatria))   |
| C SPECient"<br>2017. junt, journ | 384                    | 429<br>(172: Battar)        | <b>420</b><br>(1.0% Batter)  | 433<br>(Uto Autior)       |
| C Provention (up to 3)           |                        | _                           |                              |                           |
| SPEC CPU* 2017 Solor             |                        | Section                     | Lie Death                    | - Sector (                |

AMD EPYC<sup>™</sup> server virtualization TCO estimation tool https://www.amd.com/en/processors/epyc-VirtTCOtool



#### VIRTUALIZATION SOFTWARE

| MULTINE SOFTWARE | TAMPAGE LEVEL                                        | Dornet By       | that Selfood - Carl per Unerse |
|------------------|------------------------------------------------------|-----------------|--------------------------------|
| kildysame.       | Wheren' vighers Enterptie Plus w/ Production support | Souhert + Cares | STAR 20                        |

#### PROCESSOR DETAILS

| Data the                   | Samera Samer | Louis/Saches | Saves/Server | Senat Servers / Ram | Total Sociatio | Tenat Racks |
|----------------------------|--------------|--------------|--------------|---------------------|----------------|-------------|
| intel Xaun (P. Sald & THET |              | ж            | 34           |                     |                | ,           |
| AME BAYE THEF              |              | 38           | 28           | 3                   | 2              | 1           |

Tech Docs and White Papers - reference infrastructure https://www.amd.com/en/processors/server-techdocs/search?f%5B0%5D=server\_document\_category%3A14 01

mainten # here

#### AMD EPYL<sup>®</sup> Tech Docs and White Papers

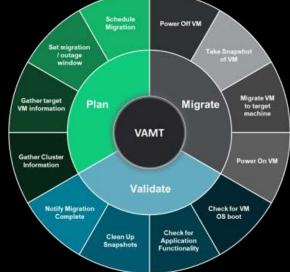
| Laiepes                          |  |
|----------------------------------|--|
| Text advances and Analysis of ST |  |
| HC and Returbation P()           |  |
| might Performance Comparing (11) |  |
| Industry Revised Salarises: 201  |  |
| Other II.                        |  |
| Performanant Benefitian bit (BE) |  |
| Route-Classic Infections (9)     |  |
| n mang di alam (M                |  |
|                                  |  |
| 9.64 m                           |  |
| Product laries                   |  |
| PVC TREAM Processor (20)         |  |
| BTYL THE Serie Pressure (H)      |  |
| after 2001 Second Processors (7) |  |
| Release Sales                    |  |
| HEIDE                            |  |
| NITLE                            |  |
| MARK                             |  |
|                                  |  |
| - AN AN ATTAC                    |  |

#### MGWX" Taxing Guide for AMD EPYC" 7003 Series Processors Langery, horoplasts Andre lange (PC 201) land framework Research Spit, heroplasts Adventure Units, 2017 VMware vSphere\* Tuning Guide for AMD EPHC\* 7003 Series Processors Gaugery Torophone Medications (FIC 7077 in the same function from the Compliane Applaced Date March 1977 High Performance Computing (HPC) Tuning Guide for AMO EPYC\* 7063 Series Processors Company Terring Social Research Street Street Terring Terring Social Research Types Terring Social Research Street Street Terring Social "Maxave eSphere" Network Tening Colde for AM3 EPTC" 7003 Series Processors Company Source States States (2011) and Source States Systems Systems States States States States States States Wasare vSAN" Taxing Golde for AMD EPVL" 7063 Series Processors Company Terrory Loss Reduct Series (199, 702) Sont Processor December Spin Terrory Sciences Series March 2022 Red Hat Enterprise Linux\* Tuning Calde AMD EPVC\* 7003 Series Processors Geograp Templania Paded Inter IPC 2021 Inter Property Deserved Spit Templania Antonio Della Martin 2021 Opensource ROBHS Turning Cuide for AMD EPYC\* 7003 Series Processors Company Source Control Product Series (FPC 702) Loss Francesco December Spec Torong Loss WWWe Turning Gunde For AMD EPVC \* 7003 Series Processors Company Income State Andreas (P.C. 2011) in the Processor Spectroscy Spectroscy States Microsoft SQL Servier" Tuning Guide for AMD EPTC " 7003 Series Processory Company Terreptions Andread Barley, 1912 Tell Janes Processor December Syst. Terreptions Anthene Oater 18,010, 7027 Container Taning Colde on Kubernetes for AMD EPIC\* 7003 Series Processors Gauge p. Surveylands, Andreak Servey, WY, 2021 in the International Research Spin. To the Joint Partner Date: March 2021

4 ( # ) # ( # ) # ( # ) MAI-?

© Copyright Advanced Micro Devices, Inc, All rights reserved.

# VMWARE ARCHITECTURE MIGRATION TOOL (VAMT)


# **IT Challenge:**

VM migration can be challenging and time consuming as many tasks need to be done in serial and manually

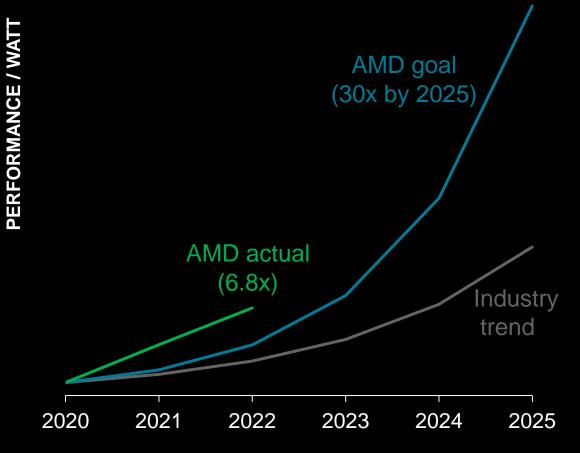
### **Solution:**

AMD and VMware jointly developed an open-source tool to automate VM Migration - making it easy to migrate VM's from your existing infrastructure to AMD EPYC. Features include:

- Fully Automated Cold Migration
- VM Success Validation
- Process Throttling
- Change Window Support
- Idempotent
- Email and Syslog Support
- Audit Trail
- Rollback



https://github.com/vmware-samples/vmware-architecture-migration-tool


# Server energy efficiency The bigger picture



# NEXT TARGET : THE 30 X 25 GOAL

### Accelerating Data Center Sustainability

Higher is better on this graph



Goal: 30x increase in energy efficiency for AMD processors and accelerators for AI-training and HPC from 2020-2025

This represents more than a 2.5x acceleration of the industry trends from 2015-2020 as measured by the worldwide energy consumption for these computing segments<sup>1</sup> and equates to a 97% reduction in energy use per computation.

AMD is ON-TRACK to achieve the 30x goal, at 6.8x improvement, and well above the industry improvement trend from 2015-2020, using an accelerated compute node powered by one 3rd Gen AMD EPYC CPU and four AMD Instinct MI250x GPUs.

https://www.amd.com/en/corpor6ate-responsibility/data-center-sustainability

AMD together we advance\_

# Leadership high performance efficiency

|                   | AMD<br>"Zen 4" Core  | Intel Ice Lake<br>Sunny Cove Core |                       | ~40%<br>less area<br>vs. competitor |
|-------------------|----------------------|-----------------------------------|-----------------------|-------------------------------------|
| Node              | TSMC 5nm             | Intel 10 Process                  | "Zen 4" Core + L2     | Up to                               |
| Core + L2 Area    | 3.84 mm <sup>2</sup> | ~6.5mm <sup>2</sup>               | Ice Lake-SP Core + L2 |                                     |
| SOC perf-per-watt | 1.48x                | <b>1.0</b> x                      |                       | more energy efficient               |

Illustrative purposes only

## Incredible impact from **EPYC<sup>™</sup> CPU** energy savings

Estimated annual energy costs\*

8500 SPECrate<sup>®</sup>2017\_int\_rate (2P)



## \$0.46 / kWh

# **Sustainability benefits** of energy efficiency

Intel 8380 servers

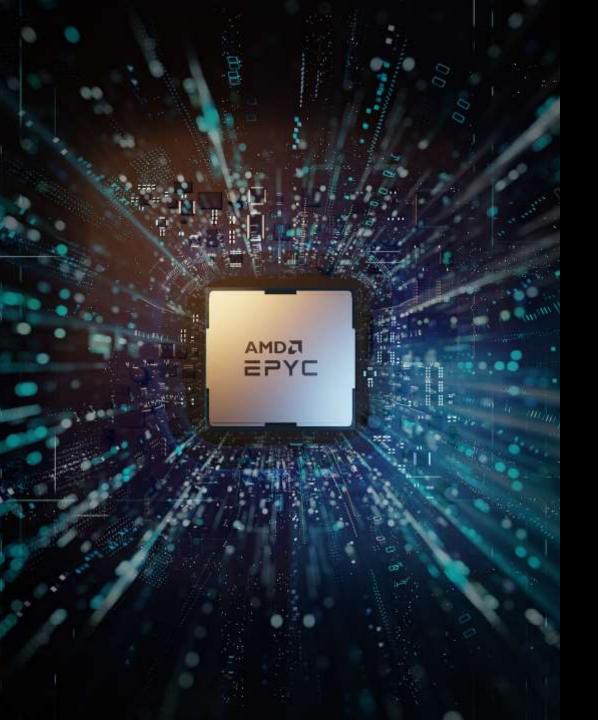
VS.

1M

# 0.318M

AMD 9654 servers

**4.3**B


kWh saved with AMD per year server power only

# 2.2M 2.4M

tons of CO<sub>2</sub> emissions reduced with AMD per year

acres of forest to remove this CO<sub>2</sub> from atmosphere





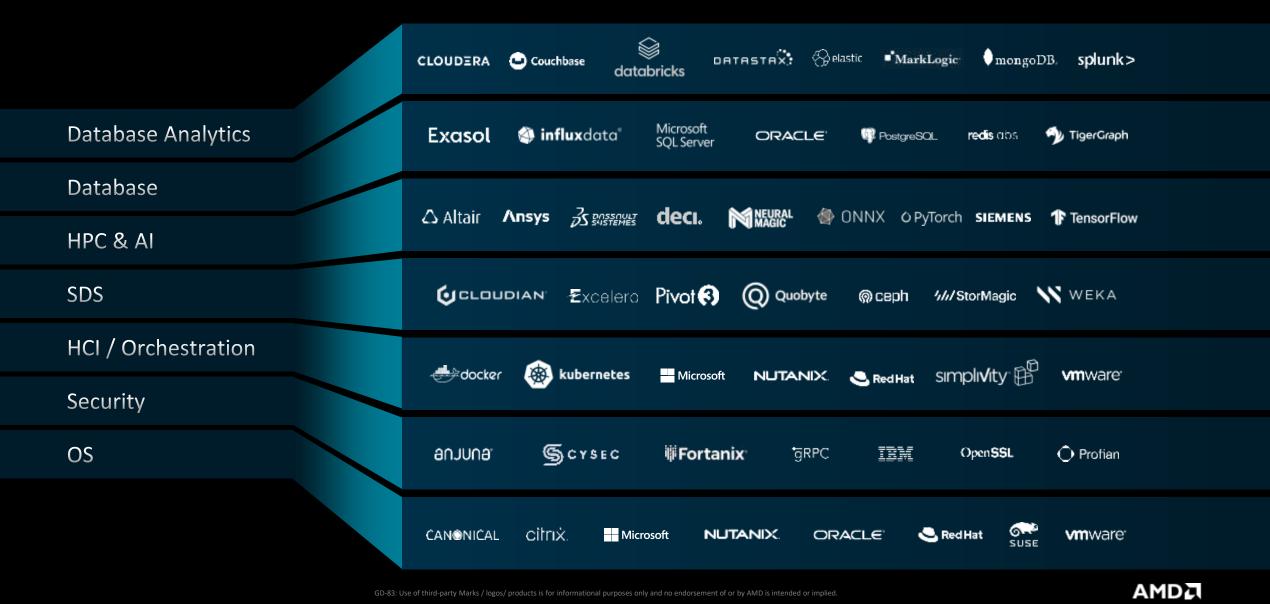
## Delivering What Customers Are Asking

World's highest performance x86 server processor

**Outstanding TCO across workloads and industries** 

Leadership x86 energy efficiency to support sustainability goals

Assurance of confidential computing


**Rich ecosystem of solutions** 



## Thank you !

## AMD together we advance\_

## **Enabling Complete Software Ecosystem**



together we advance\_

## **Complete Ecosystem of AMD EPYC™ Solutions**





EPYC-18: Max boost for AMD EPYC processors is the maximum frequency achievable by any single core on the processor under normal operating conditions for server systems.

EPYC-028B: SPECpower\_ssj® 2008, SPECrate®2017\_int\_energy\_base, and SPECrate®2017\_fp\_energy\_base based on results published on SPEC's website as of 11/10/22. VMMark® server power-performance (PPKW) based results published at https://www.vmware.com/products/vmMark/results3x.1.html?sort=score. The first 74 ranked SPECpower\_ssj®2008 publications with the highest overall efficiency overall ssj\_ops/W results were all powered by AMD EPYC processors. For SPECrate®2017 Integer (Energy Base), AMD EPYC CPUs power the first 4 of 5 SPECrate®2017\_int\_energy\_base performance/system W scores. For SPECrate®2017 Floating Point (Energy Base), AMD EPYC CPUs power the first 8 of 9 SPECrate®2017\_fp\_energy\_base performance/system W scores. For VMMark® server power-performance (PPKW), have the top two results for 2- and 4-socket matched pair results outperforming all other socket results. See https://www.amd.com/en/claims/epyc3x#faq-EPYC-028B for the full list.

EPYC-032: AMD EPYC 9004 CPUs support 12 channels of up to 4800 MHz DDR5 memory which is 460.8 GB/s of maximum memory throughput per socket. Intel Scalable "Ice Lake" CPUs support 8 channels of up to 3200 MHz DDR 4 (per https://ark.intel.com/) have a maximum 204.8 GB/s. EPYC 9004 CPUs have 2.25x the memory throughput per CPU. 460.8 ÷ 204.8 = 2.25x the max throughput or 125% more max throughput.

EPYC-034A: AMD EPYC 9004 CPUs can support 12 memory channels with 2 DPC (DIMMs / channel) 12 x 2 = 24 DIMM slots x 256GB DIMMs = 6,144GB of standard DRAM (DDR) memory or 6TB per CPU. The highest supported total memory (not just DRAM) on https://ark.intel.com/ is the Intel Xeon Ice Lake is 6 TB per CPU - but with standard DRAM the limit is 4TB: 8 memory channels x 2 DPC = 16 total DIMM slots x 256GB DIMMs = 4,096GB of DRAM (DDR) memory, or 4TB per CPU. EPYC 9004 Series supports 50% more DRAM than Intel Ice Lake CPUs.

EPYC-38: Based on AMD internal testing as of 09/19/2022, geomean performance improvement at the same fixed-frequency on a 4th Gen AMD EPYC<sup>IM</sup> 9554 CPU compared to a 3rd Gen AMD EPYC<sup>IM</sup> 7763 CPU using a select set of workloads (33) including est. SPECrate<sup>®</sup> 2017\_int\_base, est. SPECrate<sup>®</sup> 2017\_fp\_base, and representative server workloads.

GD-83: Use of third-party Marks / logos/ products is for informational purposes only and no endorsement of or by AMD is intended or implied.

GD-183: AMD Infinity Guard features vary by EPYC<sup>M</sup> Processor generations. Infinity Guard security features must be enabled by server OEMs and/or Cloud Service Providers to operate. Check with your OEM or provider to confirm support of these features. Learn more about Infinity Guard at https://www.amd.com/en/technologies/infinity-guard.

SP5-001C: SPECrate<sup>®</sup>2017\_int\_base comparison based on published results as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (1790 SPECrate<sup>®</sup>2017\_int\_base, 192 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32607.html) vs. 2P AMD EPYC 7763 (861 SPECrate<sup>®</sup>2017\_int\_base, 128 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32607.html) vs. 2P AMD EPYC 7763 (861 SPECrate<sup>®</sup>2017\_int\_base, 128 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32607.html) vs. 2P AMD EPYC 7763 (861 SPECrate<sup>®</sup>2017\_int\_base, 128 total cores, www.spec.org/cpu2017/results/res2021q4/cpu2017-20211121-30148.html).

SP5-002C: SPECrate<sup>®</sup>2017\_fp\_base comparison based on published results as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (1480 SPECrate<sup>®</sup>2017\_fp\_base, 192 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32605.html) vs. 2P AMD EPYC 7763 (663 SPECrate<sup>®</sup>2017\_fp\_base, 128 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32605.html) vs. 2P AMD EPYC 7763 (663 SPECrate<sup>®</sup>2017\_fp\_base, 128 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32605.html) vs. 2P AMD EPYC 7763 (663 SPECrate<sup>®</sup>2017\_fp\_base, 128 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32605.html) vs. 2P AMD EPYC 7763 (663 SPECrate<sup>®</sup>2017\_fp\_base, 128 total cores, www.spec.org/cpu2017/results/res2021q4/cpu2017-20211121-30146.html). ormation.

SP5-005C: SPECjbb<sup>®</sup> 2015-MultiJVM Max comparison based on published results as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (815459 SPECjbb<sup>®</sup>2015 MultiJVM max-jOPS, 356204 SPECjbb<sup>®</sup>2015 MultiJVM critical-jOPS, 192 total cores, http://www.spec.org/jbb2015/results/res2022q4/jbb2015-20221019-00861.html) vs. 2P AMD EPYC 7763 (420774 SPECjbb<sup>®</sup>2015 MultiJVM max-jOPS, 165211 SPECjbb<sup>®</sup>2015 MultiJVM critical-jOPS, 128 total cores, http://www.spec.org/jbb2015/results/res2022q3/jbb2015-20210701-00692.html). ormation.

SP5-008: 4th Gen EPYC CPUs (96c) support up to 12 channels of DDR5-4800 memory (460.8 GB/s) versus 3rd Gen EPYC CPUs (64c) that support up to 8 channels of DDR4-3200 (240.8 GB/s) memory.

SP5-009C: SPECrate<sup>®</sup>2017\_fp\_base based on published scores from www.spec.org as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (1480 SPECrate<sup>®</sup>2017\_fp\_base, 192 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32605.html) is 2.52x the performance of published 2P Intel Xeon Platinum 8380 (587 SPECrate<sup>®</sup>2017\_fp\_base, 160 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221010-32542.html).Published 2P AMD EPYC 7763 (663 SPECrate<sup>®</sup>2017\_fp\_base, 128 Total Cores, http://spec.org/cpu2017/results/res2021q4/cpu2017-20221010-32542.html).Published 2P AMD EPYC 7763 (663 SPECrate<sup>®</sup>2017\_fp\_base, 128 Total Cores, http://spec.org/cpu2017/results/res2021q4/cpu2017-20221010-32542.html).Published 2P AMD EPYC 7763 (663 SPECrate<sup>®</sup>2017\_fp\_base, 128 Total Cores, http://spec.org/cpu2017/results/res2021q4/cpu2017-20211121-30146.html) is shown at 1.13x for reference. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-010B: SPECrate<sup>®</sup>2017\_int\_base based on published scores from www.spec.org as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (1790 SPECrate<sup>®</sup>2017\_int\_base, 192 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32607.html) is 2.97x the performance of published 2P Intel Xeon Platinum 8380 (602 SPECrate<sup>®</sup>2017\_int\_base, 80 total cores, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html). Published 2P AMD EPYC 7763 (861 SPECrate<sup>®</sup>2017\_int\_base, 128 total cores, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html). Published 2P AMD EPYC 7763 (861 SPECrate<sup>®</sup>2017\_int\_base, 128 total cores, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html). Published 2P AMD EPYC 7763 (861 SPECrate<sup>®</sup>2017\_int\_base, 128 total cores, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html) is shown at 1.43x for reference. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NOTE: Red text only needs to be included with charts that show the 7763.

SP5-011B: SPECpower\_ssj<sup>®</sup>2008 comparison based on published 2U, 2P Windows<sup>®</sup> results as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (27501 overall ssj\_ops/W, 2U, http://www.spec.org/power\_ssj2008/results/res2022q4/power\_ssj2008-20221020-01194.html) vs. 2P Intel Xeon Platinum 8380 (13670 overall ssj\_ops/W, 2U, http://www.spec.org/power\_ssj2008/results/res2022q4/power\_ssj2008/results/res2022q4/power\_ssj2008-20220926-01184.html). 2P AMD EPYC 7763 (23505 overall ssj\_ops/W, 2U, http://www.spec.org/power\_ssj2008/results/res2022q4/power\_ssj2008-20220926-01184.html). 2P AMD EPYC 7763 (23505 overall ssj\_ops/W, 2U, http://www.spec.org/power\_ssj2008/results/res2022q4/power\_ssj2008-20220926-01184.html). 2P AMD EPYC 7763 (23505 overall ssj\_ops/W, 2U, http://www.spec.org/power\_ssj2008/results/res2021q2/power\_ssj2008-20210324-01091.html) shown at 1.72x for reference. SPEC<sup>®</sup> and SPECpower\_ssj<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NOTE: Red text only needs to be included with charts that show the 7763.

SP5-012B: SPECjbb® 2015-MultiJVM Max based on published scores from www.spec.org as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (815459 SPECjbb®2015 MultiJVM max-jOPS, 356204 SPECjbb®2015 MultiJVM critical-jOPS, 192 Total Cores, http://www.spec.org/jbb2015/results/res2022q4/jbb2015-20221019-00861.html) is 2.85x the performance of published 2P Intel Xeon Platinum 8380 (286125 SPECjbb®2015 MultiJVM max-jOPS, 152057 SPECjbb®2015 MultiJVM critical-jOPS, 80 Total Cores, http://www.spec.org/jbb2015/results/res2021q4/jbb2015-20211006-00706.html). 2P AMD EPYC 7763 (420774 SPECjbb®2015 MultiJVM max-jOPS, 165211 SPECjbb®2015 MultiJVM critical-jOPS, 128 total cores, http://www.spec.org/jbb2015/results/res2021q3/jbb2015-20210701-00692.html) shown at 1.47x for reference. SPEC® and SPECjbb® are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NOTE: Red text only needs to be included with charts that show the 7763.

SP5-013A: 96-core EPYC 9654 CPU processors results as of 11/10/2022 using SPECrate®2017\_int\_base. The AMD EPYC scored 1790 SPECrate®2017\_int\_base which is higher than all other 2P scores published on the SPEC® website. 2P AMD EPYC 9654 (1790 SPECrate®2017\_int\_base, 192 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32607.html). SPEC®, SPECrate® and SPEC CPU® are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-014: Estimated 16-core 4th Gen EPYC CPU processors results as of 08/31/2022 using SPECrate<sup>®</sup>2017\_int\_base. The AMD EPYC scored ~418 or ~13.06/core (measured on AMD internal reference platform and Marked estimate per SPEC Fair Use) which is higher performance-per-core than all other 2P scores published on the SPEC<sup>®</sup> website. SPEC<sup>®</sup>, SPECrate<sup>®</sup> and SPEC CPU<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-015A: SPECrate<sup>®</sup>2017\_int\_base comparison is based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9474F (1090 SPECrate<sup>®</sup>2017\_int\_base, 64 Total Cores, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 1.81x the performance (51% per core adjusted) of published 2P Intel Xeon Platinum 8380 (602 SPECrate<sup>®</sup>2017\_int\_base, 540 Total TDP W, \$17332 Total CPU \$, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html). Published 2P AMD EPYC 7643 (683 SPECrate<sup>®</sup>2017\_int\_base, 450 Total TDP W, 96 Total Cores, \$9990 Total CPU \$, http://spec.org/cpu2017/results/res2021q3/cpu2017-20210831-29186.html. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-016A: SPECrate<sup>®</sup>2017\_int\_base comparison is based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9374F (815 SPECrate<sup>®</sup>2017\_int\_base, 64 Total Cores, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 1.55x the performance of published 2P Intel Xeon Platinum 8362 (526 SPECrate<sup>®</sup>2017\_int\_base, 64 Total Cores, http://spec.org/cpu2017/results/res2021q3/cpu2017-20210802-28469.html). Published 2P AMD EPYC 75F3 (596 SPECrate<sup>®</sup>2017\_int\_base, 64 Total Cores, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210409-25541.html) is shown for reference. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-018A: SPECrate<sup>®</sup>2017\_int\_base comparison based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9174F (428 SPECrate<sup>®</sup>2017\_int\_base, 32 Total Cores, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 1.47x the performance of published 2P Intel Xeon Gold 6346 (291 SPECrate<sup>®</sup>2017\_int\_base, http://spec.org/cpu2017/results/res2022q2/cpu2017-20220419-31532.html). Published 2P AMD EPYC 73F3 (352 SPECrate<sup>®</sup>2017\_int\_base, 480 Total TDP W, 32 Total Cores, \$7042 Total CPU \$, http://spec.org/cpu2017/results/res2021q4/cpu2017-20211207-30371.html) shown at 1.2x for reference. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-021A: As of 11/10/2022, the Intel exponential trendline from top SPECrate<sup>®</sup> 2017\_int\_base published scores to date for 2P 1st, 2nd and 3rd Gen Intel based Xeon SP (LGA socketed) servers for each of 2015-2022 (expected). The AMD log trendline from top SPECrate<sup>®</sup> 2017\_int\_base published score to date, for 2P Intel based AMD EPYC servers for each of 2017, 2018, 2019, 2020, 2021, and as of claim date for 2022. The lines below are organized as: Year, CPU model, SPEC score, URL. Intel: 2017, Intel Xeon Platinum 8180, 302, <a href="https://spec.org/cpu2017/results/res2018q3/cpu2017-20180709-07701.pdf">https://spec.org/cpu2017/results/res2018q3/cpu2017-20180709-07701.pdf</a>; 2019, Intel Xeon Platinum 8280L, 364, should be 8280L <a href="https://spec.org/cpu2017/results/res2019q2/cpu2017-20190429-12779.pdf">https://spec.org/cpu2017/results/res2019q2/cpu2017-20190429-12779.pdf</a>; 2020, Intel Xeon Gold 6258R, 397, <a href="https://spec.org/cpu2017/results/res2020q3/cpu2017-20200915-23981.pdf">https://spec.org/cpu2017/results/res2019q2/cpu2017-20190429-12779.pdf</a>; 2020, Intel Xeon Gold 6258R, 397, <a href="https://spec.org/cpu2017/results/res2020q3/cpu2017-20200915-23981.pdf">https://spec.org/cpu2017/results/res2019q2/cpu2017-20190429-12779.pdf</a>; 2020, Intel Xeon Gold 6258R, 397, <a href="https://spec.org/cpu2017/results/res2019q2/cpu2017-20200915-23981.pdf">https://spec.org/cpu2017/results/res2019q2/cpu2017-20210921-26364.html</a>; 2020, Intel Xeon Platinum 8380, 602, <a href="https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html">https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html</a>; 2020, Intel Xeon Platinum 8380, 602, <a href="https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html">https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html</a>; 2021, EPYC 7601, 282, <a href="https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html">https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html</a>; 2021, EPYC 7742, 70

SP5-022: Neural Magic measured results on AMD reference systems as of 9/29/2022. Configurations:2P EPYC 9654 "Titanite" vs. 2P EPYC 7763 "DaytonaX" running on Ubuntu 22.04 LTS, Python 3.9.13, pip==22.12/deepsparse==1.0.2. BERT-Large Streaming Throughput items/sec (seq=384, batch 1, 48 streams, INT8 + sparse) using SQuAD v1.1 dataset; ResNet50 Batched Throughput items/sec (batch 256, single-stream, INT8 sparse) using ImageNet dataset; YOLOv5s Streaming Throughput ([image 3, 640, 640], batch 1, multi-stream, per-stream latency <=33ms) using COCO dataset. Testing not independently verified by AMD.

SP5-023: Estimated SPECrate<sup>®</sup> 2017\_int\_base comparison based on internal AMD reference platform measurements/projections and best published scores at www.spec.org as of 11/10/2022. AMD internal measurements or projections\* 2x AMD EPYC 9654 1550, 2x AMD EPYC 9634 1325\*, 2x AMD EPYC 9554 1250, 2x AMD EPYC 9534 1070, 2x AMD EPYC 9474F 1040, 2x AMD EPYC 9454 820, \*2x AMD EPYC 9374F 765, 2x AMD EPYC 9354 700, 2x AMD EPYC 9334 645, 2x AMD EPYC 9274F 550, \*2x AMD EPYC 9254 480\*, 2x AMD EPYC 9224 450, 2x AMD EPYC 9174F 419, 2x AMD EPYC 9124 340. Referenced: 2P Intel Xeon Platinum 8380 (602 SPECrate<sup>®</sup> 2017\_int\_base, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html) and 2P Intel Xeon Platinum 8362 (526 SPECrate<sup>®</sup> 2017\_int\_base, http://spec.org/cpu2017/results/res2021q3/cpu2017-20210802-28469.html) SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. OEM published scores will vary based on system configuration and determinism mode used (default cTDP performance profile except EPYC 9654/9554 cTDP=400W)

SP5-024A: SPECrate<sup>®</sup>2017\_fp\_base comparison is based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9474F (1110 SPECrate<sup>®</sup>2017\_fp\_base, 96 Total Cores, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 1.89x the performance (78% per core adjusted) of published 2P Intel Xeon Platinum 8380 (587 SPECrate<sup>®</sup>2017\_fp\_base, 540 Total TDP W, \$17332 Total CPU \$, http://spec.org/cpu2017/results/res2022q4/cpu2017-20221010-32542.html). Published 2P AMD EPYC 7643 (576 SPECrate<sup>®</sup>2017\_fp\_base, 450 Total CDP W, 96 Total COres, \$9990 Total CPU \$, http://spec.org/cpu2017/results/res2022q4/cpu2017-20221q4/cpu2017-20210928-29636.html) shown at 0.98x for reference. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-025A: SPECrate<sup>®</sup>2017\_fp\_base comparison is based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9374F (954 SPECrate<sup>®</sup>2017\_fp\_base, 64 Total Cores, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 1.96x the performance of published 2P Intel Xeon Platinum 8362 (486 SPECrate<sup>®</sup>2017\_int\_base, 64 Total Cores, http://spec.org/cpu2017/results/res2022q3/cpu2017-20220729-32239.html). Published 2P AMD EPYC 75F3 (546 SPECrate<sup>®</sup>2017\_fp\_base, 560 Total TDP W, 64 Total Cores, \$9720 Total CPU \$, http://spec.org/cpu2017/results/res2022q3/cpu2017-20210409-25543.html) is shown at 1.12x for reference. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information

SP5-027A: SPECrate<sup>®</sup>2017\_fp\_base comparison is based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9374F (579 SPECrate<sup>®</sup>2017\_fp\_base, 32 Total Cores, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 1.78x the performance of published 2P Intel Xeon Gold 6346 (325 SPECrate<sup>®</sup>2017\_fp\_base, 410 Total TDP W, 32 Total Cores, \$5416 Total CPU \$, http://spec.org/cpu2017/results/res2021q3/cpu2017-20210802-28471.html). Published 2P AMD EPYC 73F3 (398 SPECrate<sup>®</sup>2017\_fp\_base, 480 Total TDP W, 32 Total Cores, \$7042 Total CPU \$, http://spec.org/cpu2017/results/res2021q3/cpu2017-20210816-28714.html) shown at 1.22x for reference. SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-028A: SPECrate<sup>®</sup> 2017\_fp\_base comparison based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9554 (1200 SPECrate<sup>®</sup> 2017\_fp\_base, 800 Total TDP W, 128 Total Cores, \$18174 Total CPU \$, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 2.04x the performance (28% per core adjusted) of published 2P Intel Xeon Platinum 8380 (587 SPECrate<sup>®</sup> 2017\_fp\_base, 540 Total TDP W, 80 Total COres, \$18718 Total CPU \$, http://spec.org/cpu2017/results/res2022q4/cpu2017-20221010-32542.html). SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-029A: SPECrate<sup>®</sup>2017\_int\_base comparison based on a compliant ASUSTeK run and published scores from www.spec.org as of 11/10/2022. Comparison of compliant 2P AMD EPYC 9554 (1300 SPECrate<sup>®</sup>2017\_int\_base, 800 Total TDP W, 128 Total Cores, \$18174 Total CPU \$, compliant run ASUSTeK RS700A-E12, 1536 GB - 24x 64 GB 2Rx4 PC5-4800B-R, SUSE Linux Enterprise Server 15 SP4, AOCC 4.0) is 2.16x the performance (35% per core adjusted) of published 2P Intel Xeon Platinum 8380 (602 SPECrate<sup>®</sup>2017\_int\_base, 540 Total TDP W, 80 Total COPU \$, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html). SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

SP5-031: Black-Scholes European Option Pricing benchMark comparison based on AMD measurements for 100, 200, 400, 800, and 1600M options as of 10/4/2022. Max score is based on 200M options. Configurations: 2x 40-core Intel Xeon Platinum 8380 vs. 2x 64-core EPYC 9554 all systems on Ubuntu 22.04 and compiled with ICC 2022.1.0. Results Mar vary.2x 32-core EPYC 75F3 (shown for reference) at ~1.1x.

SP5-032: WRF® CONUS 2.5KM workload benchMark comparison based on AMD measurements as of 10/4/2022. Configurations: 2x 40-core Intel Xeon Platinum 8380 vs. vs. 2x 96-core EPYC 9654 for ~2.5x the time-step function performance. Results may vary.

SP5-033: WRF® CONUS 2.5KM workload benchMark comparison based on AMD measurements as of 10/4/2022. Configurations: 2x 32-core Intel Xeon Platinum 8362 vs. vs. 2x 32-core EPYC 9374F for ~1.98x the time-step function performance. Results may vary.

SP5-034A: Fluent<sup>®</sup> Release 2022 R2 test cases benchMark comparison based on AMD measurements as of 10/19/2022. Configurations: 2x 40-core Intel Xeon Platinum 8380 vs. vs. 2x 96-core EPYC 9654 for ~2.46x the rating performance. Results may vary.

SP5-035A: Fluent® Release 2022 R2 test cases benchMark comparison based on AMD measurements as of 10/19/2022. Configurations: 2x 32-core Intel Xeon Platinum 8362 vs. vs. 2x 32-core EPYC 9374F for ~1.75x the rating performance. Results may vary.

SP5-036: Radioss<sup>™</sup> neon workload benchMark comparison based on AMD measurements as of 10/4/2022. Configurations: 2x 40-core Intel Xeon Platinum 8380 vs. vs. 2x 96-core EPYC 9654 for ~2.59x the solver speedup performance. Results may vary.

SP5-037: Radioss<sup>™</sup> neon workload benchMark comparison based on AMD measurements as of 10/4/2022. Configurations: 2x 32-core Intel Xeon Platinum 8362 vs. vs. 2x 32-core EPYC 9374F for ~1.73x the solver speedup performance. Results may vary.

SP5-039: Autodesk<sup>®</sup> Arnold gtc\_robot workload comparison based on internal AMD reference platform measurements as of 11/10/2022. Comparison of 2P AMD EPYC 9654 (99 avg. seconds/872.73 ray-traces/day) is ~2.4x the performance of 2P Intel Xeon Platinum 8380 (235 avg seconds/367.66 ray-traces/day). Results may vary.2P EPYC 7763 shown for reference (167 avg seconds/517.37 ray-traces/day) at ~1.4x.

SP5-049B: VMMark<sup>®</sup> 3.1.1 matched pair comparison based on published results as of 11/10/2022. Configurations: 2-node, 2P 96-core EPYC 9654 powered server running VMware ESXi 8 RTM (40.19 @ 44 tiles/836 VMs, https://www.vmware.com/content/dam/digitalMarketing/vmware/en/pdf/vmMark/2022-10-18-HPE-ProLiant-DL385Gen11.pdf) versus 2-node, 2P 40-core Xeon Platinum 8380 running VMware ESXi v7 U2 (14.19 @ 14 tiles/266 VMs, https://www.vmware.com/content/dam/digitalMarketing/vmware/en/pdf/vmMark/2021-04-20-Fujitsu-PRIMERGY-RX2540M6.pdf) for 2.8x the score and 3.1x the tile (VM) capacity. 2-node, 2P EPYC 7763-powered server (23.33 @ 24 tiles/456 VMs, https://www.vmware.com/content/dam/digitalMarketing/vmware/en/pdf/vmMark/2022-02-08-Fujitsu-RX2540M1.pdf) shown at 1.6x the performance for reference. VMMark is a registered tradeMark of VMware in the US or other countries.

SP5-065: SPECrate<sup>®</sup>2017\_int\_energy\_base comparison based on published results as of 11/10/2022. Configurations: 2P AMD EPYC 9654 (1890 SPECrate<sup>®</sup>2017\_int\_energy\_base/1190 SPECrate<sup>®</sup>2017\_int\_base, 192 total cores, www.spec.org/cpu2017/results/res2022q4/cpu2017-20221024-32633.html) vs. 2P Intel Xeon Platinum 8380 (725 SPECrate<sup>®</sup>2017\_int\_energy\_base/531 SPECrate<sup>®</sup>2017\_int\_base, 80 total cores, www.spec.org/cpu2017/results/res2021q2/cpu2017-20210412-25603.html). 2P AMD EPYC 7713 (1610 SPECrate<sup>®</sup>2017\_int\_energy\_base/576 SPECrate<sup>®</sup>2017\_int\_base, 128 total cores, www.spec.org/cpu2017/results/res2021q1/cpu2017-20210301-25148.html) shown at 2.22x for reference. NOTE: Red text only needs to be included with charts that show the 7763.

SP5-067: SPECjbb® 2015-MultiJVM Max based on published scores from www.spec.org as of 11/10/2022. Configurations: 2P AMD EPYC 9374F (359294 SPECjbb®2015 MultiJVM max-jOPS, 167272 SPECjbb®2015 MultiJVM critical-jOPS, 64 total cores, http://www.spec.org/jbb2015/results/res2022q4/jbb2015-20221005-00856.html) is 1.71x the performance of published 2P Intel Xeon Gold 6338 (210635 SPECjbb®2015 MultiJVM max-jOPS, 111971 SPECjbb®2015 MultiJVM critical-jOPS, 64 total cores, http://www.spec.org/jbb2015/results/res2022q1/jbb2015-20220209-00717.html). 2P AMD EPYC 75F3 (276317 SPECjbb®2015 MultiJVM max-jOPS, 116628 SPECjbb®2015 MultiJVM critical-jOPS, 64 total cores, http://www.spec.org/jbb2015/results/res2022q2/jbb2015-20220209-00717.html). 2P AMD EPYC 75F3 (276317 SPECjbb®2015 MultiJVM max-jOPS, 116628 SPECjbb®2015 MultiJVM critical-jOPS, 64 total cores, http://www.spec.org/jbb2015/results/res2021q2/jbb2015-20210408-00637.html) shown at 1.310x for reference. SPEC® and SPECjbb® are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NOTE: Red text only needs to be included with charts that show the 75F3.

SP5-068: SPECrate<sup>®</sup>2017\_int\_base, SPECrate<sup>®</sup>2017\_fp\_base, and BERT-large estimates based on internal AMD reference platform measurements of 11/3/2022. Floating-point throughput comparison: 2P AMD EPYC 9534 (1030 est. SPECrate<sup>®</sup>2017\_fp\_base, 560 Total TDP W, 128 Total Cores) is 1.66x the performance/W of 2P AMD EPYC 7763 (622 est. SPECrate<sup>®</sup>2017\_fp\_base, 560 Total TDP W, 128 Total Cores). Integer throughput comparison: 2P AMD EPYC 9534 (1070 est. SPECrate<sup>®</sup>2017\_int\_base, 560 Total TDP W, 128 Total Cores) is 1.34x the performance/W of published 2P AMD EPYC 7763 (800 est. SPECrate<sup>®</sup>2017\_int\_base, 560 Total TDP W, 128 Total Cores). Bert-Large NLP sparse INT8 comparison: 2P AMD EPYC 9534 (345.6 items/sec, 560 Total TDP W, 128 Total Cores) is 2.67x the performance/W of published 2P AMD EPYC 7763 (129.7 items/sec, 560 Total TDP W, 128 Total Cores). SPEC<sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. OEM published scores will vary based on system configuration and determinism mode used (default cTDP performance profile).

SP5-069: SPECrate<sup>®</sup>2017\_int\_base estimate based on internal AMD reference platform measurements and published score from www.spec.org as of 11/10/2022. Comparison of estimated 1P AMD EPYC 9554P (631 SPECrate<sup>®</sup>2017\_int\_base, 400 Total TDP W, 64 Total Cores, \$7104 Total CPU \$, AMD Est) is 1.05x the performance of published 2P Intel Xeon Platinum 8380 (602 SPECrate<sup>®</sup>2017\_int\_base, 540 Total TDP W, 80 Total COPU \$, AMD Est) is 1.05x the performance of published 2P Intel Xeon Platinum 8380 (602 SPECrate<sup>®</sup>2017\_int\_base, 540 Total TDP W, 80 Total COPU \$, http://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.html) [at 1.42x the performance/W] [at 2.76x the performance/CPU\$]. AMD 1Ku pricing and Intel ARK.intel.com specifications and pricing as of 8/22/22. SPEC <sup>®</sup>, SPEC CPU<sup>®</sup>, and SPECrate<sup>®</sup> are registered tradeMarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. OEM published scores will vary based on system configuration and determinism mode used (default cTDP performance profile)

SP5-070: MySQL<sup>®</sup> 8.0.17 DSS comparison based on AMD measured median scores on 2P 96-core EPYC 9654 compared to 2P 40-core Xeon Platinum 8380 running virtualized HammerDB TPROC-H SF1 (KVM Hypervisor Virtualization server environment with 4 streams, 4 virtual units, calculating throughput with 4 streams x 22 queries x 3600 divided by the slowest VU completion time in seconds) as of 11/10/2022. Configurations: 2x AMD EPYC 9654 (~126,980 TPROC-H tpm) vs. 2x Xeon Platinum 8380 (~47452 TPROC-H queries/hour) for ~2.68x the tpm performance.

SP5-071: MySQL<sup>®</sup> 8.0.17 OLTP comparison based on AMD measured median scores on 2P 96-core EPYC 9654 compared to 2P 40-core Xeon Platinum 8380 running virtualized HammerDB TPROC-C (KVM Hypervisor Virtualization server environment with 400 WH and 64 users) as of 11/10/2022. Configurations: 2x AMD EPYC 9654 (~126,980 TPROC-C tpm/~531,183 NOPM) vs. 2x Xeon Platinum 8380 (~47452 TPROC-C tpm/~224,126 NOPM) for ~2.37x the tpm/NOPM performance.

SP5TCO-009K: As of 11/10/2022 based on AMD Internal analysis using the AMD EPYC<sup>TM</sup> Bare Metal Server & Greenhouse Gas Emission TCO Estimation Tool - version 6.35 estimating the cost and quantity of 2P AMD EPYC<sup>TM</sup> 9654 powered servers versus 2P Intel<sup>®</sup> Xeon<sup>®</sup> 8380 based server solutions required to deliver 8500 units of integer performance. Environmental impact estimates made leveraging this data, using the Country / Region specific electricity factors from the '2020 Grid Electricity Emissions Factors v1.4 – September 2020', and the United States Environmental Protection Agency 'Greenhouse Gas Equivalencies Calculator'. This scenario contains many assumptions and estimates and, while based on AMD internal research and best approximations, should be considered an example for information purposes only, and not used as a basis for decision making over actual testing. The analysis includes both hardware and virtualization software components. For additional details, see https://www.amd.com/en/claims/epyc3x#faq-SP5TCO-009K.

SP5TCO-010K: This scenario contains many assumptions and estimates and, while based on AMD internal research and best approximations, should be considered an example for information purposes only, and not used as a basis for decision making over actual testing. The Bare Metal Server Greenhouse Gas Emissions TCO (total cost of ownership) Estimator Tool compares the selected AMD EPYC<sup>™</sup> and Intel<sup>®</sup> Xeon<sup>®</sup> CPU based server solutions required to deliver a TOTAL\_PERFORMANCE of 8,500 units of integer performance based on the estimated or published scores for Intel Xeon and AMD EPYC CPU based servers. This estimation reflects a 1-year time frame. This analysis compares a 1P AMD EPYC 64 core 9554P CPU powered server with an estimated SPECrate<sup>®</sup>2017\_int\_base score of 631, performance estimated using AMD reference platform; compared to a 2P Intel Xeon 40 core Platinum\_8380 based server with a SPECrate<sup>®</sup>2017\_int\_base score of 602 https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.pdf.

SP5TCO-011k: This scenario contains many assumptions and estimates and, while based on AMD internal research and best approximations, should be considered an example for information purposes only, and not used as a basis for decision making over actual testing. The Bare Metal Server Greenhouse Gas Emissions TCO (total cost of ownership) Estimator Tool compares the selected AMD EPYC<sup>M</sup> and Intel<sup>®</sup> Xeon<sup>®</sup> CPU based server solutions required to deliver a TOTAL\_PERFORMANCE of 8,500 units of integer performance based on the estimated or published scores for Intel Xeon and AMD EPYC CPU based servers. This estimation reflects a 1-year time frame. This analysis compares a 1P AMD EPYC 96 core 9654P CPU powered server with an estimated SPECrate<sup>®</sup>2017\_int\_base score of 895, performance estimated using AMD reference platform; compared to a 2P Intel Xeon 40 core Platinum\_8380 based server with a SPECrate<sup>®</sup>2017\_int\_base score of 602 https://spec.org/cpu2017/results/res2021q2/cpu2017-20210521-26364.pdf.

SP5TCO-012K: As of 10/10/2022 based on AMD Internal analysis using the AMD EPYC<sup>TM</sup> SERVER VIRTUALIZATION and GREENHOUSE GAS EMISSIONS TCO ESTIMATION TOOL - version 10.75 estimating the cost and quantity of 2P AMD EPYC<sup>TM</sup> 9654 (96 core/CPU) powered server versus 2P Intel® Xeon® 8380 (40 core/CPU) based server solutions required to deliver 200 total virtual machines (VM), requiring 8 core and 16GB of memory per VM, for the 1st year. Environmental impact estimates made leveraging this data, using the Country / Region specific electricity factors from the '2020 Grid Electricity Emissions Factors v1.4 – September 2020', and the United States Environmental Protection Agency 'Greenhouse Gas Equivalencies Calculator'. This scenario contains many assumptions and estimates and, while based on AMD internal research and best approximations, should be considered an example for information purposes only, and not used as a basis for decision making over actual testing. For additional details, see https://www.amd.com/en/claims/epyc4#-SP5TCO-012K.

SP5TCO-019K: As of 11/10/2022 based on AMD Internal analysis using the AMD EPYC<sup>™</sup> SERVER VIRTUALIZATION and GREENHOUSE GAS EMISSIONS TCO ESTIMATION TOOL - version 10.75 estimating the cost and quantity of 2P AMD EPYC<sup>™</sup> 9654 (96 core/CPU) powered server versus 2P Intel<sup>®</sup> Xeon<sup>®</sup> Gold 8380 (40 core/CPU) based server solutions required to deliver 1995 total virtual machines (VM) based on VMMark tiles in published results, for 1st year. Environmental impact estimates made leveraging this data, using the Country / Region specific electricity factors from the '2020 Grid Electricity Emissions Factors v1.4 – September 2020', and the United States Environmental Protection Agency 'Greenhouse Gas Equivalencies Calculator'. This scenario contains many assumptions and estimates and, while based on AMD internal research and best approximations, should be considered an example for information purposes only, and not used as a basis for decision making over actual testing. For additional details, see https://www.amd.com/en/claims/epyc4#SP5TCO-019K.

#### **DISCLAIMER AND ATTRIBUTION**

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change. "Rome", "Milan", "Genoa", "Zen2", "Zen2", "Zen3", and "Zen4" are codenames for AMD architectures, and are not product names.

©2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, Infinity Fabric, and combinations thereof are tradeMarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be tradeMarks of their respective companies. Microsoft SQL Server is a tradeMark of Microsoft Corporation in the US or other jurisdictions, PCIe - PCIe is a registered tradeMark of PCI-SIG Corporation, Oracle is a registered Mark of Oracle and/or its affiliates, Radioss is a tradeMark of Altair Engineering, Inc. SPEC<sup>®</sup>, SPECrate<sup>®</sup>, and SPECpower<sup>®</sup> are registered tradeMarks of Standard Performance Evaluation Corporation. Learn more at spec.org. More information about SPEC<sup>®</sup> is available at http://www.spec.org. VMMark is a registered tradeMark of VMware in the US or other countries.