SSDs – basics & details on performance

Werner Fischer, Technology Specialist Thomas-Krenn.AG

LinuxTag 2011, May 11th - 14th 2011, Berlin / Germany

SSDs - basics delis on performe

Werner Fig. chnology Specialist . enn.AG

_J11, May 11th - 14th 2011, Berlin / Germa.

The last talk before LinuxNacht

7 p.m. Umspannwerk Ohlauer Str. 43

Agenda

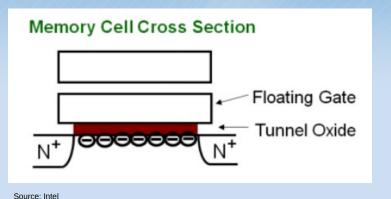
1) SSD layout

2) Write techniques

3) Usage examples

4) Configurations tips

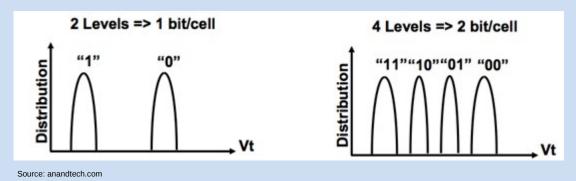
Agenda


1) SSD layout

- memory cells
- pages & blocks
- planes
- dies
- TSOPs & SSDs
- 2) Write techniques
- 3) Usage examples
- 4) Configurations tips

memory cells

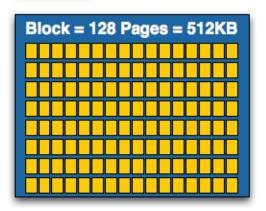
- NAND memory cell = MOS transistor with floating gate
- permanently store charge



- programming puts electrons on floating gate
- erase takes them off
- one program/erase (p/e) cycle is a round trip by the electrons
- back-and-forth round trips gradually damage the tunnel oxide
- endurance is limited, measured in number of p/e cycles:
 - 50nm MLC ~ 10.000 p/e cycles
 - 34nm/25nm/20nm MLC ~ 3.000 5.000 p/e cycles

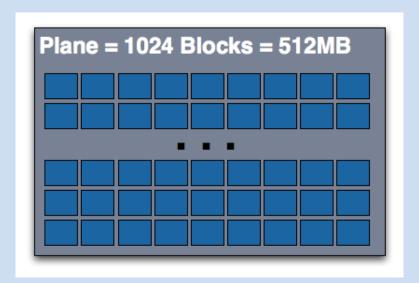
memory cells

- SLC (Single Level Cell) → 1 Bit per memory cell
- MLC (Multi Level Cell) → 2 Bits per memory cell


- TLC (Triple Level Cell) → 3 Bits per memory cell
- 16LC (16 Level Cell) → 4 Bits per memory cell

pages: multiple memory cells

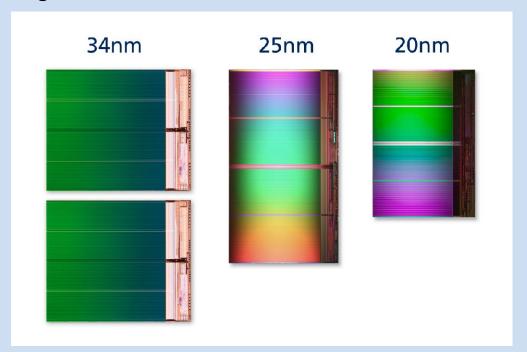
- one page is the smallest structure which can be *read* or *written*
- blocks: multiple pages
 - one block is the smallest structure which can be *erased*
 - e.g.
 one block = 128 pages á 4 KiB
 (with MLC 16.384 memory cells per page)
 → 512 KiB Block
 - newer SSDs (25nm/20nm Intel/Micron or 24nm/19nm Sandisk/Toshiba) one block = 256 pages á 8 KiB
 - → 2 MiB Block

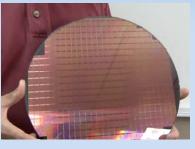


Source: anandtech.com

planes

- multiple blocks make up a plane
- e.g. 1.024 Blocks = 1 Plane
- 25nm Intel/Micron:1 Plane = 2 GiByte




Source: anandtech.com

dies

multiple planes make up a die,e.g. 4 Planes = 1 Die

wafer
Source: Intel/Micron

Intel/Micron: dies with 64 GiBit (8 GiByte)

TSOPs (thin small outline packages)

- multiple dies make up a TSOP
- typically one two dies in a TSOP
- up to eight dies possible
 - → 64 GiByte in a TSOP

Source: Intel/Micron

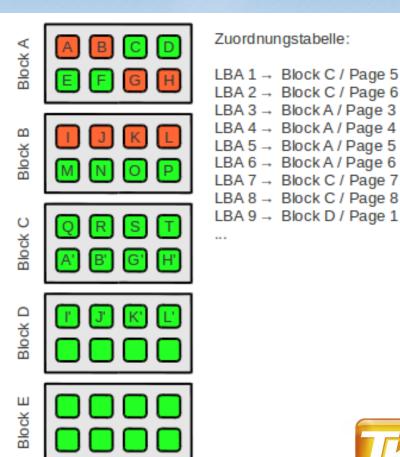
SSDs

- multiple TSOPs (e.g. ten)
 make up a SSD
- currently capacities up to 600 GB

Source: maximumpc.com

Agenda

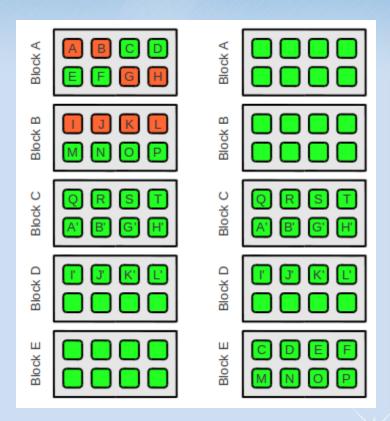
- 1) SSD layout
- 2) Write techniques
 - spare area
 - wear leveling
 - ATA TRIM
 - garbage collection
 - secure erase
 - endurance
- 3) Usage examples
- **4)** Configurations tips


spare area

- typically between 7% and 28% of net capacity
- e.g. 160 GByte visible, but actual capacity is 160 GiByte (171,8 GByte → 11,8 GByte Spare Area)
- spare area is used for
 - read/modify/write
 - wear leveling
 - bad block replacement

wear leveling

- flash memory cells can only be erased (written) a limited amount of times
- wear leveling distributes the wearout over all memory cells


ATA TRIM

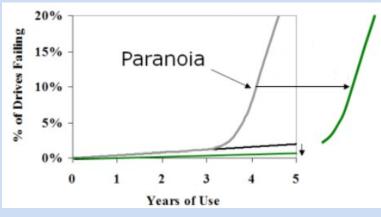
- OS tells the SSD which LBAs are not needed anymore and can be erased
- increases the number of deleted blocks, increases the write performance
- ATA TRIM must be supported by
 - SSD
 - operating system
 - file system

garbage collection

- at times without I/O the SSD controller merges partly-filled blocks
- increases the number of deleted blocks

secure erase

- all data gets lost
- for most SSDs, this deletes all blocks of the SSD by applying an extinction voltage
- afterwards all blocks are deleted → higher write performance
- recommended when
 - a used SSD will be used for a different application
 - after performance tests have been done and the SSD should be used for production usage
- newer SSD with integrated encryption only delete encryption key when doing a secure erase – TRIM is needed there for deleting all blocks


endurance

- bad blocks
 - erase slows down with p/e cycles
 - if a NAND block fails to erase, the NAND reports that and the controller will use another block instead
 - no lost data, a failed NAND block is not a problem (as long as there is enough spare capacity)
- write data errors
 - RBER (raw bit error rate) corrected by ECC
 - RBER gradually increases with p/e cycles
 - ECC used for correction
 - UBER (uncorrectable bit error rate) must be kept very low (<1 error out of every 10¹⁵ to 10¹⁶ accesses)

endurance

- data retention
 - number of hours (days/years) how long the data can be written if the device is powered off and not in use
 - ECC can correct a limited number of errors
 - retention time decreases with p/e cycles
- defects
- all NAND devices have a "wearout cliff"
 - new JDEC standards (TBW – Terabytes written)

Source: Intel

Agenda

- 1) SSD layout
- 2) Write techniques
- 3) Usage examples
 - SSD as (small) boot device
 - SSD as replacement for a single HDD
 - SSDs in a RAID configuration
 - SSD as cache
- 4) Configuration tips

SSD as (small) boot device

- low number of p/e cycles, daily turnover e.g. 0,1x
- low SSD capacity
 (e.g. 40 GB or 80 GB) is enough
 (lower costs)
- shortened boot-up times
- programs start faster
- increases the productivity when working at the PC

SSD as replacement for a single HDD

- normal/low number of p/e cycles,
 daily turnover e.g. 0,5x; often less
- middle/higher SSD capacity (middle/higher costs)
- less power usage and less waste heat, as there is no HDD any more
- very interesting option for laptops:
 - increases run-time of battery
 - decreases weight
 - increases productivity

SSDs in a RAID configuration

- normal/low number of p/e cycles,
 daily turnover e.g. 0,5x; often less
- middle/higher SSD capacity (middle/higher costs)
- ATA TRIM can not be used with RAID controllers

SSD as cache

- high number of p/e cycles, daily turnover e.g. 10x
- SSD endurance must be monitored
 - increased spare area increases endurance
- examples
 - Adaptec maxCache
 - cache device for ZFS

Agenda

- 1) SSD layout
- 2) Write techniques
- 3) Usage examples
- 4) Configuration tips
 - use AHCI
 - secure erase / full TRIM before production use
 - us ATA TRIM
 - align partitions and file systems
 - use over-provisioning

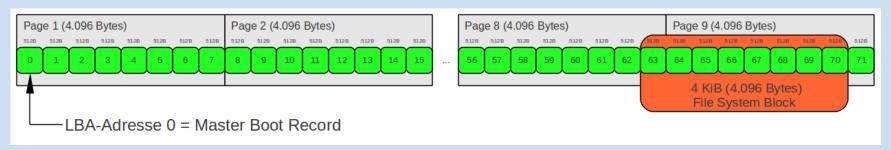
4) Configuration tips

use AHCI

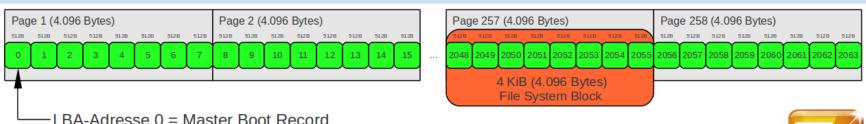
- NCQ (Native Command Queuing)
- LPM (Link Power Management)
 - use Device Initiated Interface Power Management (DIPM)

secure erase / full TRIM before production use

- before doing the partitioning
- erases all blocks of the SSD
- increases write performance


use ATA TRIM

- Linux 2.6.33 or higher (e.g. Ubuntu 10.10)
- batched discard support in 2.6.37 (FITRIM ioctl),
 Ext3 & XFS support batched discard with 2.6.38



4) Configuration tips

- align partition and file systems
 - wrong alignment:

- use fdisk parameters: fdisk -c -u /dev/sda
- correct alignment:

4) Configuration tips

over-provisioning (increase spare area)

Source: Intel

Conclusions

technology of SSDs has evolved

prices per GByte decrease (25 nm, later 20nm)

endurance planning possible with new JEDEC standard

→ SSDs will get even more important in the future

Thanks for your time!

wfischer@thomas-krenn.com hall 7.2a, booth 143

